2024 : 11 : 21
Abbas Eslami

Abbas Eslami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Chemistry
Address: Department of Inorganic Chemistry Faculty of Chemistry University of Mazandaran Babolsar P.O.Box 47416-95447, Mazandaran, IRAN
Phone: +98-11-35302381

Research

Title
Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate
Type
JournalPaper
Keywords
Composite materials, Nanostructures, Differential scanning calorimetry (DSC), Electron microscopy, Precipitation
Year
2016
Journal MATERIALS CHEMISTRY AND PHYSICS
DOI
Researchers Abbas Eslami ، Nafise Modanlou Juibari ، Seyed Ghorban Hosseini

Abstract

The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu2þ and Cr3þ in the nanocomposites, smaller particle size and more crystal defect.