2024 : 11 : 21
Abbas Eslami

Abbas Eslami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Chemistry
Address: Department of Inorganic Chemistry Faculty of Chemistry University of Mazandaran Babolsar P.O.Box 47416-95447, Mazandaran, IRAN
Phone: +98-11-35302381

Research

Title
Synthesis and Characterization of CuO Nanoparticles by the Chemical Liquid Deposition Method and Investigation of Its Catalytic Effect on the Thermal Decomposition of Ammonium Perchlorate
Type
JournalPaper
Keywords
copper oxide nanoparticles, ex-situ growth, ammonium perchlorate, thermal decomposition, chemical liquid deposition
Year
2017
Journal Central European Journal of Energetic Materials
DOI
Researchers Abbas Eslami ، Nafise Modanlou Juibari ، Seyed Ghorban Hosseini ، Maryam Abbasi

Abstract

Copper oxide nanoparticles have been synthesized by the chemical liquid deposition method and characterized by means of X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD and SEM results showed that the particle size was between 50 nm and 70 nm. Ammonium perchlorate (AP)-CuO nanostructures have been prepared by ex-situ mixing of AP and CuO nanoparticles, while AP/CuO nanocomposites have been obtained by in-situ growth of nano CuO on the surface of AP. The effect of the nanoparticles on the thermal decomposition of AP has been examined by differential scanning calorimetery (DSC) and thermogravimetric analysis (TGA) methods. The results showed that the ex-situ prepared nanoparticles had better catalytic activity than the in-situ prepared ones. The effect of the synthesized nanoparticles on the thermal decomposition of AP in experiments with a AP to CuO ratio of 98:2 was as follows: with the ex-situ prepared experiments, the decomposition temperature decreased from 428 °C to 348 °C and the heat released increased from 344 J·g−1 to 1432 J·g−1, while those with the in-situ prepared samples exhibited 341 °C and 1317 J·g−1, respectively.