2024 : 5 : 27
Hamed Salimi-Kenari

Hamed Salimi-Kenari

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
Faculty: Faculty of Technology and Engineering
Address:
Phone: 01135305105

Research

Title
In vitro apatite formation of calcium phosphate composite synthesized from fish bone
Type
JournalPaper
Keywords
annealing, calcium phosphate, composite cement, fish bone, hydroxyapatite
Year
2019
Journal International Journal of Applied Ceramic Technology
DOI
Researchers Morteza Asadollahzadeh ، Sayed Mahmood Rabiee ، Hamed Salimi-Kenari

Abstract

Calcium phosphate‐based composite (CPC) is the main biomaterial substitute used for bone repair. Properties affecting bioactivity of this composite vary depending on the types of calcium phosphate crystalline phases. Hence, in this study, bioactivity behavior of novel CPC cement by the incorporation of calcium phosphate (CP), which was obtained from fish bones, dicalcium phosphate dehydrate, and chitosan solution, was monitored in simulated body fluid (SBF). In advance, the microstructure of CP produced by heat treatment (annealing) of fish bone was evaluated at two different temperatures 600 and 900°C. The X‐ray diffraction (XRD) results showed that there was no secondary phase formation aside from natural hydroxyapatite (HA) in bones annealed; and the annealing process enhanced the crystallinity of CP phase in the bone matrix particularly when annealed at 900°C. After incubation of CPC cement in SBF, bone bonding ability and producing of biomimetic HA coat on the CPC cement surface were confirmed using XRD, fourier‐transform infrared spectroscopy, and scanning electron microscopy. The analysis results show that needle‐like and cauliflower apatite layer with the crystallite size about 100 nm was grown on the surface of CPC cement after 28 days incubation in SBF. Regardless of above findings, we conclude that varying the annealing temperature has tremendous effect on the production of natural HA from fish bone with required properties and the ultimate morphology of obtained CPC cements after soaking is directly depended on the degree of crystallinity of the prepared natural HA.