12.1 INTRODUCTION

The stability of an interconnected power system is its ability to return to normal
or stable operation after having been subjected to some form of disturbance.
Conversely, instability means a condition denoting loss of synchronism or
falling out of step. Stability considerations have been recognized as an essential
part of power system planning for a long time. With interconnected systems
continually growing in size and extending over vast geographical regions, it is
becoming increasingly more difficult to maintain synchronism between various
parts of a power system.

The dynamics of a power system are characterised by its basic features given
below:

1. Synchronous tie exhibits the typical behaviour that as power transfer is
gradually increased a maximum limit is reached beyond which the system
cannot stay in synchronism, i.e., it falls out of step.

2. The system is basically a spring-inertia oscillatory system with inertia on
the mechanical side and spring action provided by the synchronous tie wherein
power transfer is proportional to sin §or ¢ (for small & &6 being the relative
internal angle of machines).

3. Because of power transfer being proportional to sin §, the equation
determining system dynamics is nonlinear for disturbances causing large
variations in angle ¢. Stability phenomenon peculiar to non-linear systems as
distinguished from linear systems is therefore exhibited by power systems
(stable up to a certain magnitude of disturbance and unstable for larger
disturbances).

Accordingly power system stability problems are classified into three basic
types*—steady state, dynamic and transient.

*There are no universally accepted precise definitions of this terminology. For a
definition of some important terms related to power system stability, refer to IEEE
Standard Dictionary of Electrical and Electronic Terms, IEEE, New York, 1972.
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The study of steady state stability is basically concerned with the

determination of the upper limit of machine loadings before losing synchronism,
provided the loading is increased gradually. : '

Dynamic instability is more probable than steady state instability. Small

disturbances are. ,rcontinually—«;eecaam'—ngﬂirrf"p,ower**system’” (variations in~

loadings, changes in turbine speeds, etc.) which are small enough not to cause
the system to lose synchronism but do excite the system into the state of natural
oscillations. The system is said to be dynamically stable if the oscillations do
not acquire more than certain amplitude and die out quickly (i.e., the system is
well-damped). In a dynamically unstable system, the oscillation amplitude is
large and these persist for a long time (i.e., the system is underdamped). This
kind of instability behaviour constitutes a serious threat to system security and
creates very difficult operating conditions. Dynamic stability can be signifi-
cantly improved through the use of power system stabilizers. Dynamic system
study has to be carried out for 5-10 s and sometimes up to 30 s. Computer
simulation is the only effective means of studying dynamic stability problems.
The same simulation programmes are, of course, applicable to transient stability
studies. ‘
Following a sudden disturbance on a power system rotor speeds, rotor
angular differences and power transfer undergo fast changes whose magnitudes
are dependent upon the severity of disturbance. For a large disturbance, changes
in angular differences may be so large as to cause the machines to fall out of
step. This type of instability is known as transient instability and is a fast
phenomenon usually occurring within 1 s for a generator close to the cause of
disturbance. There is a large range of disturbances which may occur on a power
system, but a fault on a heavily loaded line which requires opening the line to
clear the fault is usually of greatest concern. The tripping of a loaded generator
or the abrupt dropping of a large load may also cause instability.

The effect of short circuits (faults), the most severe type of disturbance to
which a power system is subjected, must be determined in nearly all stability
studies. During a fault, electrical power from nearby generators is reduced
drastically, while power from remote generators is scarcely affected. In some
cases, the system may be stable even with a sustained fault, whereas other
systems will be stable only if the fault is cleared with sufficient rapidity.
Whether the system is stable on occurrence of a fault depends not only on the
system itself, but also on the type of fault, location of fault, rapidity of clearing
and method of clearing, i.e., whether cleared by the sequential opening of two
or more breakers or by simultaneous opening and whether or not the faulted line
is reclosed. The transient stability limit is almost always lower than the steady
state limit, but unlike the latter, it may exhibit different values depending on the
nature, location and magnitude of disturbance.

Modern power systems have many interconnected generating stations, each
with several generators and many loads. The machines located at any one point
in a system normally act in unison. It is, therefore, common practice in stability
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studies to consider all the machines at one point as one large machine. Also
machines which are not separated by lines of high reactance are lumped
together and considered as one equivalent machine. Thus a multimachine
system can often be reduced to an equivalent few machine system. If

‘synchronism is lost, the machines of each group stay together although they go

out of step with other groups. Qualitative behaviour of machines in an actual
system is usually that of a two machine system. Because of its simplicity, the
two machine system is extremely useful in describing the general concepts of
power system stability and the influence of various factors on stability. It will
be seen in this chapter that a two machine system can be regarded as a single
machine system connected to infinite system.

Stability study of a multimachine system must necessarily be carried out on
a digital computer.

12.2 DYNAMICS OF A SYNCHRONOUS MACHINE

The kinetic energy of the rotor at synchronous machine is

KE =—;- Ji2,, x 1075 MJ

where J = rotor moment of inertia in kg-m?
Wy, = synchronous speed in rad (mech)/s
But W, = (g) W, = rotor speed in rad (elect)/s
where £ = number of machine poles
2
KE = L J(E) w, X10*6]w‘.
2 P/ '
- 1 M w,
7 !
2)? 6
where M=J P w, x 10

= moment of inertia in MJ-s/elect rad

We shall define the inertia constant H such that
GH =KE = % M w, MJ

G = machine rating (base) in MVA (3-phase)
H = inertia constant in MI/MVA or MW-s/MVA

where
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It immediately follows that

2GH _ GH MJ-s/elect rad (12.1)

Wy nf

M =

= —GE—MJ s/elect degree
180f

M is also called the inertia constant.
Taking G as base, the inertia constant in pu is

M (pu)

H s/elect rad (12.2)
rf

= s?/elect degree
180f

The inertia constant H has a characteristic value or a range of values for
each class of machines. Table 12.1 lists some typical inertia constants.

» Table 12.1 Typical inertia constants of synchronous machines”

Intertia Constant H
Stored Energy in MW Sec per MVA**

Type of Machine

Turbine Generator

Condensing 1,800 rpm 9-6
3,000 rpm 7-4

Non-Condensing 3,000 rpm 4-3
Water wheel Generator

Slow-speed (< 200 rpm) 2-3

High-speed (> 200 rpm) 2-4
Synchronous Condenser®**

Large 1.25

Small 1.00
Synchronous Motor with load varying [rom

1.0 to 5.0 and higher for heavy flywheels 2.00

It is observed from Table 12.1 that the value of H is considerably higher for
steam turbogenerator than for water wheel generator. Thirty to sixty per cent of
the total inertia of a steam turbogenerator unit is that of the priine mover,
whereas only 4 —~15% of the inertia of a hydroelectric generating unit is that of
the waterwheel, including water.

* Reprinted with permission of the Westinghous Electric Corporation from
Electrical Transmission and Distribution Reference Book.
** Where range is given, the first figure applies to the smaller MVA sizes.
*#% Hydrogen-Cooled, 25 per cent less.
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e Swing Equation

ure 12.1 shows the torque, speed and flow of mechanical and electrical
wers in a synchronous machine. It is assumed that the windage, friction and
n-loss torque is negligible. The differential equation governing the rotor
namics can then be written as

d?e
J dtzm =T, - T, Nm (12.3)
‘here
g, = angle in rad (mech)
T, = turbine torque in Nm; it acquires a negative value for a motoring
machine -
T, = electromagnetic torque developed in Nm; it acquires negative value

for a motoring machine

)-Pe %__PB

Tm
i %%enerator

P k,_;\_} \: Motoj
r‘ i
T g Ws /g
(@) (b)
Fig. 12.1 Flow of mechanical and electrical powers in a synchronous machine

While the rotor undergoes dynamics as per Eq. (12.3), the rotor speed
changes by insignificant magnitude for the time period of interest (1s) [Sec.
12.1]. Equation (12.3) can therefore be converted into its more convenient
yower form by assuming the rotor speed to remain constant at the synchronous

peed (w,,). Muluplymg both sides of Eq. (12.3) by w,,’ we can write

d?0

Juw, "ox 10 =P, - P, MW (12.4)
o de? ’
where
P, = mechanical power input in MW
P, = electrical power output in MW:; stator copper loss is assumed
negligible.

Rewriting Eq. (12.4)

2\ d’e,
(J(F) w, x 10°%) —% =P, - P, MW
[

where 6, = angle in rad (elect)
2

o 4 dd ez = P B (12.5)
t
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It is more convenient to measure the angular position of the rotor with respect
to a synchronously rotating frame of reference. Let

6= 6, — wt; rotor angular displacement from synchronously
rotating reference frame

(called torque angle/power angle) (12.6)
From Eq. (12.6)
d?g, d%*s
£ =— 12.7
di* de? (127
Hence Eq. (12.5) can be written in terms of & as
d*s :
M P =P, - P, MW (12.8)

With M as defined in Eq. (12.1), we can write

G 2
—Hd—f =P, - P, MW (12.9)
wf dr
Dividing throughout by G, the MVA rating of the machine,
d*s
M(pu) Frel = P,- P,
in pu of machine rating as base (12.10)
where
H
M(pu) = —
2
or «iié) =P, — P, pu (12.11)
zfdt

This equation (Eq. (12.10)/Eq. (12.11)), is called the swing equation and it
describes the rotor dynamics for a synchronous machine (generating/motoring).
It is a second-order differential equation where the damping term (proportional
to dd/dr) is absent because of the assumption of a lossless machine and the fact
that the torque of damper winding has been ignored. This assumption leads to
pessimistic results in transient stability analysis—damping helps to stabilize the
system. Damping must of course be considered in a dynamic stability study.
Since the electrical power P, depends upon the sine of angle & (see Eq. (12.29)),
the swing equation is a non-linear second-order differential equation.

Multimachine System

In a multimachine system a common system base must be chosen.
Let
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G hach = machine rating (base)
Gyysiem = System base

Equation (12.11) can then be written as

Gmach (Hmach _(12_6) = (Pm o ) M

Gsystem f dtz ‘ Gsystem
H 2
or L d—f =P, — P, pu in system base (12.12)
wf dt
— Gmach
where Hyygem = Hypaen | = (12.13)
system

= machine inertia constant in system base

Machines Swinging Coherently

Consider the swing equations of two machines on a common system base.

2
:—}% =P, — P, pu (12.14)
H, d%5,
zf di’
Since the machine rotors swing together (coherently or in unison)
O =06=2¢
Adding Eqs (12.14) and (12.15)

H,, 42§
e; % =P,- P, (12.16;
us r

=P,,- P, pu L (12.15)

P m = /2 m1 t P m2
P, =Py + Py (12.17)
Hg,=H, + H,
The two machines swinging coherently are thus reduced to a single machine as
in Eqg. (12.16). The equivalent inertia in Eq. (12.17) can be written as
ch = Hl mach Gl mach/Gsystem + H2 mach G2 mach/Gsystem (1218)
The above results are easily extendable to any number of machines swinging
coherently.

'Example 12.1]

A 50 Hz, four pole turbegenerator rated 100 MVA, 11 kV has an inertia
constant of R O MIMAV A



“g40 | Modern Power System An
|

Power System Stability I 441

(a) Find the stored energy in the rotor at synchrondus speed.

(b) If the mechanical input is suddenly raised to 80 MW for an electrical load

of 50 MW, find rotor acceleration, neglecting mechanical and electrical
losses.

(c) If the acceleration calculated in part (b) is maintained for 10 cycles, find

the change in torque angle and rotor speed in revolutions per minute at the
end of this period.
solution

(a) Stored energy = GH = 100 x 8 = 800 MJ

d?s
(b) P, =80-50=30 MW =M v
t
M = CH. . _800.. = U Ml-s/elect deg
180f  180x50 45
2
45 dt
or
d*s

0= = 3375 elect deg/s?
t

(c) 10 cycles = 0.2 s
Change in 6= 7(337.5) x (0.2)* = 6.75 elect degrees

337.5
2x360°

.. Rotor speed at the end of 10 cycles

=60 x

= 28.125 rpm/s

= 120x50 56 195 0.2

1505.625 rpm

12.3 POWER ANGLE EQUATION

In solving the swing equation (Eq. (12.10)), certain simplifying assumptions are
usually made. These are:

1. Mechanical power input to the machine (P,,) remains constant during the
period of electromechanical transient of interest. In other words, it means that
the effect of the turbine governing loop is ignored being much slower than the
speed of the transient. This assumption leads to pessimistic result—governing
loop helps to stabilize the system.

2. Rotor speed changes are insignificant—these have already been ignored
in formulating the swing equation.

S i
3. Effect of voltage regulating loop during the transien.t is ignoréd, as a

consequence the generated machine emf remains constant. Th1$ assumpnc‘m also

leads to pessimistic results—voltage regulator hglps to stabilize the system.
Before the swing equation can be solved, it is necessary to determine the

- dependence of the electrical power output (P,) upon the rotor angle.

Simplified Machine Model

For a nonsalient pole machine, the per phase induced emf-terminal voltage
equation under steady conditions is
E=V+ Xy + jX ) X4> X,
where I=1,+ 1,
and usual symbols are used.
Under transient condition
X, = X < X,

(12.19)
(12.20)

but

X, =X, since the main field is on the d-axis

X} < X, ; but the difference is less than in Eq. (12.19)
Equation (12.19) during the transient modifies to

E =V + jXil;+ jX, (12.21)
=V + X, - I+ jX/1,
= (V+ jXD + jXy~ XDl (12.22)

The phasor diagram corresponding to Egs. (12.21) and (12.22) is drawn in

e iti ! ins almost unaffected
Since under transient condition, X', < X, but X, remains almost una J

it is fairly valid to assume that

I (12.23)
Xy~ X, o
] XaXqlg
g
v/,l F\ ¥
\
e 1 Xl
e . Y — 3
li.,, o ' / i
N 7”/// T Xy
Y\\\‘_JG v
L 1 -\‘:’\__‘;};‘
’d\ e ";

Fig. 12.2 Phasor diagram—salient pole machine
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Equation (12.22) now becomes
E =V+ JX1

= V+jXx/I (12.24)

The machine model corresponding to Eq. (12.24) is drawn in Fig. 12.3 which §

also applies to a cylindrical rotor machine where X/= X, = X/(transient
synchronous reactance)

Xy j

4 1) T SN

J j
E::;Erfzﬁ.(f L) v

Fig. 12.3 Simplified machine model
The simplified machine of Fig. 12.3 will be used in all stability studies.

Power Angle Curve

For the purposes of stability studies |E’ I, transient emf of generator motor,
remains constant or is the independent variable determined by the voltage
regulating loop but V, the generator determined terminal voltage is a dependent
variable. Therefore, the nodes (buses) of the stability study network pertain to
the emf terminal in the machine model as shown in Fig. 12.4, while the machine
reactance (X,) is absorbed in the system network as different from a load flow
study. Further, the loads (other than large synchronous motors) will be replaced
by equivalent static admittances (connected in shunt between transmission
network buses and the reference bus). This is so because load voltages vary

during a stability study (in a load flow study, these remain constant within a
narrow band).

[T T
/
f /
i di
F ——e—{—/FTT
|
+ /
f/rlr\\ J/
E L) \ System network
| 3
| \
L e = ¥
r
Fig. 12.4
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Fig. 12.5 Two-bus stability study network
For the 2-bus system of Fig. 12.5
ok
= i Y,=Y (12.25)
Ypus [YZ . Y, 12 21
Complex power into bus is given by
Pi + ]Q; = Eili*
At bus 1
Py +jO, = E{ (Y,,E\)* + E; (Y,E)* (12.26)

But
E\ =1E/t £6; E) = E') 26,
Y, =Gy + jByy; Yo = 11,0 £0,

Since in solution of the swing equation only real power is involved, we have
from Eq. (12.26)

Py =1E/T G+ 1E/VIES 1Y 51 cos (8, — & - 0,,) (12.27)
A similar equation will hold at bus 2.

Let
IE} ’G,, =P,
IElll |E2/| |Y|2' = Pmax
b-6=6
and ¢12 =7/2 —

Then Eq. (12.27) can be written ag¢
P, =P_+ P, sin (60— ); Power Angle Equation (12.28)
For a purely reactive network
Gy =0 (. P, = 0); lossless network
0.1'2 = “/2, L. ’\f = 0
Hence
max SN 0 (12.29a)
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E'IIE) |
where Poox = DX‘—Z;
simplified power angle equation (12.29b)

where X = transfer reactance between nodes (i.e., between E| and E;)

The graphical plot of power angle equation (Eq.(12.29)) is shown in
Fig. 12.6.
P, T |

Pmax [
(PSO+APB)\\ ,,,,,, Generator
P e0
-180° -90°
' o *\ 90° 1800
PRV

Motor

Fig. 12.6 Power angle curve

The swing equation (Eq. (12.10)) can now be written as
H O
nf di?
which, as already stated, is a non-linear second-order differential equation with
no damping.

P, - P, sin §pu (12.30)

m

12.4 NODE ELIMINATION TECHNIQUE

In stability studies, it has been indicated that the buses to be considered are
those which are excited by the internal machine voltages (transient emf’s) and
not the load buses which are excited by the terminal voltages of the generators.
Therefore, in Ygyg formulation for the stability study, the load buses must be
eliminated. Three methods are available for bus elimination. These are
illustrated by the simple system of Fig. 12.7(a) whose reactance diagram is
drawn in Fig. 12.7(b). In this simple situation, bus 3 gets easily eliminated by
parallel combination of the lines. Thus

jo.1 j0.5 1£0°

o
- =
Sosusd
X’d =0.25

jo5

E28 (

(b)
Fig. 12.7 A simple system with its reactance diagram

0.5
X, =025+ 0.1 + >

=0.6

Consider now a more complicated case wherein a 3-phase fault occurs at the
midpoint of one of the lines in which case the reactance diagram becomes that

of Fig. 12.8 (a).
Star-Delta Conversion

Converting the star at the bus 3 to delta, the network transforms to that of
Fig. 12.8(b) wherein

©

j0.25  j0.1

— ]— SEEE T
b

H

Efes (
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©,

Ix12

‘_

: | —
- iy
12 KS 3 E é j0.25 <> 1

N

@ (b)
JXrh 0.5 @

B
. ¢

0.25x0.354+0.35x0.54+0.5%0.25
0.25

(c)
Fig. 12.8

X =

= 1.55

This method for a complex network, however, cannot be mechainzed for
preparing a computer programme.

Thevenin's Equivalent

With reference to Fig. 12.8(a), the Thevenin's cquivalent for the network
portion to the left of terminals a b as drawn in Fig. 12.8(c) wherein bus 1 has
been modified to 1’.

0.25

Vip = ——2 __ |E'| £§
™ 0254035

=0417 |E') £§

x, = 035x025
™ 035+025

Now
X, =0.146 + 0.5 = 0.646%*

*This value is different from that obtained by star delta transformation as Vi, is no
longer 1E'l Z& in fact it is 0.417 |E/l /6
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This method obviously is cumbersome to apply for a network of even small
complexity and cannot be computerized.

'

Node Elimination Technique

Formulate the bus admittances for the 3-bus system of Fig. 12.8(a). This
network is redrawn in Fig. 12.9 wherein instead of reactance branch,

admittances are shown. For this network,

@ 52
| —j2.86 ’ —— 160
211 F
L iﬁf
—146\. fc_'i—jfl
ﬁ ‘
Fig. 12
1]-286 0 2.86
3| 286 2 —886 N

The bus 3 is to be eliminated.
In general for a 3-bus system

I Yy Yo Ys[V

L|=\Y Y, Y|V, (12.31)
I8 Y, Y, DV
Since no source is connected at the bus 3
or Y5V + Y3V, + Y33V =0
Y, W
or V,=— 3Ly, - 2y, (12.32)

Y,
33 33
Substituting this value of V; in the remaining two equations of Eq. (12.31),
thereby eliminating V;,
Iy =Y Vi + 1oV + Y3V,

Y,,Y, Y5t
=()/11_ 13 3[]‘/1+[1/12_ 13 32)‘/2
),33 Y33
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In compact form

Yy Yi,
Ygys (reduced) = v v (12.33)
21 2
where
Y,,Y
Y, =Y, -3 (12.34a)
b,
Y=Yy =Yy~ Yk, (12.34b)
B :
Y
Y =Yy~ 2;,Y32 (12.34¢)
33
In general, in eliminating node n
¥, (0ld)Y,; (0ld)
Y, (new) = Y,; (old) - —————= 12.35
; (new) = Y,; (0ld) Yool (12.35)
Applying Eq. (12.34) to the example in hand
Yo« (reduced) = j —1937  0.646
redu e
Bus TEHEEL =T | 0646 —5.549

It then follows that

1
X, = —— = 1.548 ( ~ 1.55
127 0646 ( )

Exampla 12.2 ]

In the system .sh()wn in Fig. 12,10, a three-phase static capacitive reactor of
reactance 1 pu per phase is connected through a switch at motor bus bar.
Calculate the limit of steady state power with and without reactor switch closed.
Recalculate the power limit with capacitive reactor replaced by an inductive
reactor of the same value.

Xi=0.1pu

)i )
Genk 4)3\_ il g
OC X;=0. 25pu [ oC

Xdg =1pu \

|

Fig. 12.10

D 1pu

(‘_) Motor

f‘v—\'/-\ v

am= 1pu

Assume the internal voltage of the generator to be 1.2 pu and that of the motor
to be 1.0 pu.
Solution
(1) Steady state power limit without reactor
|E IE, | 12 x1

X(total) 1+01+025401+1

(2) Equivalent circuit with capacitive reactor is shown in Fig. 12.11 (a).

j1.0 jo1  jo.25 joA j10 j0.965
IR

Fig. 12.11

\__/+

|Ef=12 =j1.0

_

(a)

Converting star to delta, the network of Fig. 12.11(a) is reduced to that of
Fig. 12.11(b) where
7135 x jl1+ j11x (—j1.0) 4 (—j1.0) x j1.35 .,
—j10

jX(transfer) =

= j0.965

12 x1
teady stat limit = =——— = 1.244 pu
Steady state power li 0.965 p

(3) With capacitive reactance replaced by inductive reactance, we get the
equivalent circuit of Fig. 12.12. Converting star to delta, we have the
trasfer reactance of

j1.35 j11

*L ; h A
¢ D = o ()
] ]

Fig. 12.12

j135% j11+ jLIx j10 + jl10x j1.35
j10

jX(transfer) =

=j3.935
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!
1.2x1
935

Steady state power limit = = 0.304 pu

[ Exapia a3

The generator of Fig. 12.7(a) is delivering 1.0 pu power to the infinite bus (vi
= 1.0 pu), with the generator terminal voltage of 1V,] = 1.0 pu. Calculate the
generator emf behind transient reactance. Find the maximum power that can be
transferred under the following conditions:

(a) System healthy

(b) One line shorted (3-phase) in the middle

(c) One line open.

-Plot all the three power angle curves.

Solution

Let Vi= 1Vl La=1Za

From power angle equation
I
vl sin a=P,
Ix1 .

or ———— | sin o =1

025+ 0.1
| or w = 20.5"

Current into infinite bus,

_IWiZa-1vizoe

= X

_12205°-140°
j0.35

=1+ j0.18 = 1.016 £10.3°
Voltage behind transient reactance,
E' =1Z0°+ j0.6 x (1 + j0.18)
=0.892 + j0.6 = 1.075 £33.9°
(a) System healthy

I

IVILE'l _ 1x1.075
X, 0.6
Pe =179 sin é 6))

(b) One line shorted in the middle:

Py =

max

=1.79 pu

Power System Stability !\mm‘éﬁ
As already calculated in this section,
Xlz = 1.55
1x1.075
P, =----= =0.694 pu
ma 1.55
or P, =0.694 sin (i)

(c) One line open:
It easily follows from Fig. 12.7(b) that
X, =025+0.1+05=0.85

- 1x1.075 _ 1.265
a 0.85
or P,=1265sin 6 (iii)

The plot of the three power angle curves (Egs. (i), (ii) and giii)) is drawn in
Fig. 12.13. Under healthy condition, the system is operated with P,, = .Pe =1.0
pu and & = 33.9° i.e., at the point P on the power angle curve 1.79 sin 4. As
one line is shorted in the middle, P,, remains fixed at 1.0 pu (governing system
act instantaneously) and is further assumed to remain ﬁxe{i throughm.lt the
transient (governing action is slow), while the operating point %nstant'ly s?nfts .to
Q on the curve 0.694 sin dat 6= 33.9°. Notice that because of machine inertia,

the rotor angle can not change suddenly. .
Pa
1.79 sin b
1.79 e
1.265 | _1.265sin 8
Pm=1.0 | 0.694 sin §

0.694 |

e
' f
33.9° 90° 8

Fig. 12.13 Power angle curves-

12,5 SIMPLE SYSTEMS

Machine Connected to Infinite Bus

Figure 12.14 is the circuit model of a single machine connected to infinite bus
through a line of reactance X,. In this simple case
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1
— vy’
Xtransfer = Xd + Xe

From Eq. (12.29b)

E'NMVI . _
Pe = sin ¢ = Pmax sin 6 (1236)
transfer
The dynamics of this system are described in Eq. (12.11) as
2
A (12.37)
mf dt
Infinite
£ Xa bus
— I N ——— T»
+ ] PE
/ \
(E’l<8 ( T/j Vi0e

Fig. 12.14 Machine connected to infinite bus

Two Machine System

The case of two finite machines connected through a line (X)) is illustrated in
Fig. 12.15 where one of the machines must be generating and the other must
be motoring. Under steady condition, before the system goes into dynamics and

X' Xe X'a2
S 1 RO N U

+
e

N L2
Pmt——s QF) = lel o — 2 ) P2
‘ |E’1]ZB1 'Elzléﬁz

Fig. 12,15 Two-machine system

Pp == P = P, (12.38a)
the mechanical input/output of the two machines is assumed to remain constant
at these values throughout the dynamics (governor action assumed ' slow).
During steady state or in dynamic condition, the electrical power output of the
generator must be absorbed by the motor (network being lossless). Thus at all
time

Py ==Py=P, (12.38b)
The swing equations for the two machines can now be written as

d261> (Pl_l)elj [P _P]
=7f | =nf |2 (12.39a)
dt2 11]1 H1

Power System Stability [ 453;
[}
LIS it 21 (—-P‘-’_Pﬂ] (12.39b)
and dr? —“f( H, H,
Subtracting Eq. (12.39b) from Eq. (12.39a)
(4, ~ &) =ﬂf(Hl+H2j (P, - P.) (12.40)
dr’ HH,
T Heq 9—22 =P,— P (12.41)
° Af dr "
where 5=6- 6 (12.42)
H,, = _Hily (12.43)
" H +H,
The electrical power interchange is given by expression
!
|E, ILE, | sin§ (12.44)

T X+ X+ X
The swing equation Eq. (12.41) and the power angle eguatlf)n Eq. (12.44)
have the same form as for a single machine connected to infinite pus. jI’hus a
two-machine system is equivalent to a single machine c.onnected to infinite bus.
Because of this, the single-machine (connected to infinite bus) system would be
studied extensively in this chapter.
Example 12.4 |
In the system of Example 12.3, the generator has an inertia constapt of 4 MJ/
MVA, write the swing equation upon occurrence of the fault. Wh.at is the initial
angu1;1r acceleration? If this acceleration can be assumed to remain constant for

At = 0.05s, find the rotor angle at the end of this time interval and the new
acceleration.

Solution
Swing equation upon occurrence of fault
2
BB,
180f dt
2
4 (—i—g =1-0.694 sin 6
180x 50 dt
d’s .
—= =2250 (1 — 0.694 sin &).
or a7
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Initial rotor angle & = 33.9° (calculated in Example 12.3)

d*s 5 . .
= = 2250 (1 - 0.694 sin 33.9°
ds r=o"
= 1379 elect deg/s’
dé .
. = 0; rotor speed cannot change suddenly
dtlr—o*
As(in At = 0.05s) = % x 1379 x (0.05)2
=1.7°
O =&+ A6=339 + 1.7° = 35.6°
d*s . o
— =2250 (1 - 0.694 sin 35.6°
dr’ 1=0.05s

= 1341 elect deg/s*

Observe that as the rotor angle increases, the electrical power output of the
generator increases and so the acceleration of the rotor reduces.

12.6 STEADY STATE STABILITY

The steady state stability limit of a particular circuit of a power system is
defined as the maximum power that can be transmitted to the receiving end
without loss of synchronism.

Consider the simple system of Fig. 12.14 whose dynamics is described by
equations

Mﬁ =P, - P, MW; Eq. (12.8)
df ~omT Te T B US
H .
M = — in pu system (12.45)
7f
and P, = g A sin &= P, sin & (12.46°

d
For determination of steady state stability, the direct axis reactance (X,) anu
voltage behind X, are used in the above equations.

The plot of Eq. (12.46) is given in Fig. 12.6. Let the system be operating
with steady power transfer of P, = P,, with torque angle ¢ as indicated in the
figure. Assume a small increment A P in the electric power with the input from
the prime mover remaining fixed at P, (governor response is slow compared to

the speed of energy dynamics), causing the torque angle to chaqge to (& + Ab).
Linearizing about the operating point Qq (P, &) we can write

AP, = (dl) As
¢ 84 Jo

The excursions of A ¢ are then described by

2
M .dd?é =P, - (Py+ AP) =— AP,
or
m LA6 [an ] A6=0 (12.47)
d# aé 1y
. (OP, J
3 Ab =0
or |:Mp +( a6 ),
d
where P = ar
The system stability to small changes is determined from the characteristic
equation
OP,
Mp* +| 5| =0
f L’M ]

whose two roots are

[—wf;/ocs)o ]‘
P==
M
P./O &), is positive, the roots are purely imaginary and conjugate

‘:nsdlct)llxlf sa;sgm el/Jelfe)l(z/iouI; is oscillatory about 69. Line resistance aqd damper
windings of machine, which have been ignored.m the above modelling, causle
the system oscillations to decay. The system is therefore stable for a small
increment in power so long as

| (OP/8), > 0 (12.48)
When (0 P,/J6), is negative, the roots are real, one positiye and the 'other
negative but of equal magnitude. The torque ?ngle therefo.re increases ‘w1thotl)1t
bound upon occurrence of a small power increment (disturbance) and the
synchronism is soon lost. The system is therefore unstable for

(OP/D6)y <0

(OP,/D6), is known as synchronizing coefficient. This is also called stiffness

(electrical) of synchronous machine. - ‘
Assuming |E| and V1 to remain constant, the system is unstable, if
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i
I1ENVI cos & <0
or & > 90° (12.49)

The maximum power that can be transmitted without loss of stability (steady
state) occurs for

& =90 (12.50)

and is given by
NV
X

If the system is operating below the limit of steady stability condition (Eq.
12.48), it may continue to oscillate for a long time if the damping is low.
Persistent oscillations are a threat to system security. The study of system
damping is the study of dynamical stability.

The above procedure is also applicable for complex systems wherein
governor action and excitation control are also accounted for. The describing
differential equation is linearized about the operating point. Condition for
steady state stability is then determined from the corresponding characteristic
equation (which now is of order higher than two). ‘

It was assumed in the above account that the internal machine voltage
| El remains constant (i.e., excitation is held constant). The result is that as
loading increases, the terminal voltage |V, dips heavily which cannot be
tolerated in practice. Therefore, we must consider the steady state stability limit
by assuming that excitation is adjusted for every load increase to keep
[Vl constant. This is how the system will be operated practically. It may be
understood that we are still not considering the effect of automatic excitation
control.

Steady state stability limit with IV,I'and 1V constant is considered in
Example 12.6.

P

(12.51)

max

[ Example 12.5

A synchronous generator of reactance 1.20 pu is connected to an infinite bus
bar (VI = 1.0 pu) through transformers and a line of total reactance of 0.60 pu.
The generator no load voltage is 1.20 pu and its inertia constant is H = 4 MW-
S/MVA. The resistance and machine damping may be assumed negligible. The
system frequency is 50 Hz.

Calculate the frequency of natural oscillations if the generator is loaded to

(i) 50% and (ii) 80% of its maximum power limit.

Solution

(i) For 50% loading

fe 0.50r § =30°
P

max

sin 60=

BP,_,] _laxt oo
06 e 18

=0.577 MW (pu)/elect rad
4

- = s2/elect rad
7 x50 x50

M(pu) =

From characteristic equation

(G

p==
L
- 0.577)(507r)2 _x 476
B 4
Frequency of oscillations = 4.76 rad/sec
= 4730 _ 0.758 Hz
27

(ii) For 80% loading

o 0.8 or ¢ = 53.1°

max

sin ¢

(Oi) = 213 cos 53.1°
96 Jsz e
= 0.4 MW (pu)/elect rad

1
. (0.4><50 ﬁ)' =+ j3.96

=z
p J 4
Frequency of oscillations = 3.96 rad/sec
= = 0.63 Hz
2

l}ixample 12.6

Find the steady state power limit of a system consisting of a generaFor
equivalent reactance 0.50 pu connected to an infinite bus through a series
reactance of 1.0 pu. The terminal voltage of the generator is held at 1.20 pu and

the voltage of the infinite bus is 1.0 pu.

Solution o
The system is shown in Fig. 12.16. Let the voltage of the infinite bus be taken

as reference.
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Then V=10 £ V=12 /46
Now I = Vr___li = -1.—2'4—0_'_]&
JX J1

V=1.0£0°

Fig. 12.16

E=V,+jXJ =12 26+ jo5 | 2240-10
jl
or

E=18 £0-05= (18 cos 6-0.5) + j1.8 sin ¢

Steady State pOWeI llmlt 18 I‘eached When E haS an an, le Of (5 = 90 ) l.e., 1ts Ieal
g

1.8 cos #-05=0
or 0 =73.87°
Now V=12 £7387° = 0332 + j1.152
/= 0332 + j1.152 —1
Jjl
E =0332 + j1.152 + j0.5 (1.152 + J0.668)

=-0.002 + j1.728 = 1.728 / 9¢°
Steady state power limit is given by

_IETIVI _ 1728x1
X, +X 15

If instead, the generator emf is held fixed a
2 t a value of 1.
state power limit would be of 1.2 pu, the steady

_12x1
15

It is observed that_ regulating the generator emf to hold the terminal generator
voltage at 1.2 pu raises the power limit from 0.8 pu to 1.152 pu; this is how
the voltage regulating loop helps in power system stability.

= 1.152 + j0.668

max

= 1.152 pu

P

max

= 0.8 pu

————steady state limit. Now, with-increased fault clearing speeds, it is possible to

Some Comments on Steady State Stability

A knowledge of steady state stability limit is important for various reasons. A
system can be operated above its transient stability limit but not above its

make the transient limit closely approach the steady state limit.

As is clear from Eq. (12.51), the methods of improving steady state stability
limit of a system are to reduce X and increase either or both | El and | V1. If the
transmission lines are of sufficiently high reactance, the stability limit can be
raised by using two parallel lines which incidently also increases the reliability
of the system. Series capacitors are sometimes employed in lines to get better
voltage regulation and to raise the stability limit by decreasing the line
reactance. Higher excitation voltages and quick excitation system are also
employed to improve the stability limit.

12.7 TRANSIENT STABILITY

It has been shown in Sec. 12.4 that the dynamics of a single synchronous
machine connected to infinite bus bars is governed by the nonlinear differential
equation

d’s
M Pl P,- P, .
where P,=P_ . sind
2
or M %g: =P, — P Siné (12.52)

As said earlier, this equation is known as the swing equation. No closed form
solution exists for swing equation except for the simple case P, = O (not a
practical case) which involves elliptical integrals. For small disturbance (say,
gradual loading), the equation can be linearized (see Sec. 12.6) leading to the
concept of steady state stability where a unique criterion of stability
(OP,/106>0) could be established. No generalized criteria are available* for
determining system stability with large disturbances (called transient stability).
The practical approach to the transient stability problem is therefore to list all
important severe disturbances along with their possible locations to which the
system is likely to be subjected according to the experience and judgement of
the power system analyst. Numerical solution of the swing equation (or
equations for a multimachine case) is then obtained in the presence of such
disturbances giving a plot of §vs. f called the swing curve. f § starts to
decrease after reaching a maximum value, it is normally assumed that the
system is stable and the oscillation of §around the equilibrium point will decay

*Recent literature gives methods of determining transient stability through
Liapunov and Popov’s stability criteria, but these have not been of partical use so far.
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and finally die out. As already pointed out in the introduction, important severe
disturbances are a short circuit or a sudden loss of load.

For ease of analysis certain assumptions and simplifications are always made
(some of these have already been made in arriving at the swing equation (Eq.
(12.52)). All the assumptions are listed, below along with their justification-and
consequences upon accuracy of results.

1. Transmission line as well as synchronous machine resistance are
ignored. This leads to pessimistic result as resistance introduces damping term
in the swing equation which helps stability. In Example 12.11, line resistance
has been taken into account.

2. Damping term contributed by synchronous machine damper windings is
ignored. This also leads to pessimistic results for the transient stability limit.

3. Rotor speed is assumed to be synchronous. In fact it varies insignifi-
cantly during the course of the stability transient.

4. Mechanical input to machine is assumed to remain constant during the
transient, i.e., regulating action of the generator loop is ignored. This leads to
pessimistic results, ,

5. Voltage behind transient reactance is assumed to remain constant, i.e.,
action of voltage regulating loop is ignored. It also leads to pessimistic results.

6. Shunt capacitances are net difficult to account for in a stability study.
Where ignored, no greatly significant error is caused.

7. Loads are modelled as constant admittances. This is a reasonably
accurate representation.

Note: Since rotor speed and hence frequency vary insignificantly, the network
parameters remain fixed during a stability study.

A digital computer programme to compute the transient following sudden
disturbance can be suitably modified to include the effect of governor action
and excitation control.

Present day power systems are so large that even after lumping of machines
(Eq. (12.17)), the system remains a multimachine one. Even then, a simple two-
machine system greatly aids the understanding of the transient stability
problem. It has been shown in Section 12.4 that an equivalent single-machine
infinite bus system can be found for a two-machine system (Egs. (12.41) to
(12.43)).

Upon occurrence of a severe disturbance, say a short circuit, the power
transfer between machines is greatly reduced, causing the machine torque
angles to swing relatively. The circuit breakers near the fault disconnect the
unhealthy part of the system so that power transfer can be partially restored,
improving the chances of the system remaining stable. The shorter the time to
breaker operating, called clearing time, the higher is the probability of the
system being stable. Most of the line faults are transient in nature and get
cleared on opening the line. Therefore, it is common practice now to employ
autoreclose breakers which automatically close rapidly after each of the two

Powsr System Stability m
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sequential openings. If the fault still persists, the circui‘t b.reakers open and lock
permanently till cleared manually. Since in the majority of 'faults the first
reclosure will be successful, the chances of system stability are greatly

enhanced by using autoreclose breakers.

LT — ‘ Infinite
7 G)ﬁ [ L \ bus bar
d N )

¥

Fig. 12.17

The procedure of determining the stability of a system upon occ-:urre_m:é of a
disturbance followed by various switching off and switching on actions is ca]lfcd
a stability study. Steps to be followed in a stability s.md)( are outlined below or
a single-machine infinite bus bar system shown in Flg. 12.17. The fault is
assumed to be a transient one which is cleared by the time of first recllosur‘tlzl.
In the case of a permanent fault, this system completgly fal!s apart. This wi
not be the case in a multimachine system. The steps listed, in fact, apply to a
system of any size. ‘ .

1. From prefault loading, determine the voltage behind transxer‘xt rez.lctance

. and the torque angle & of the machine with reference to the infinite b.us.

2. For the specified fault, determine the power transfer equation P (&) during

' Jault. In this system P, = O for a three-phase fault. | N
3. From the swing equation starting with § as obta'tined in step. 1, calculate
& as a function of time using a numerical technique of solving the Jnon-
linear differential equation. |
4. After clearance of the fault, once again determine Pf, (6) and solve further
for & (#). In this case, P, (8 = 0 as when the fault is cleared, the system
gets cisconnected. ‘ ‘

5. After the transmission line is switched on, again find P, (é) and continue

to calculate ¢ (f). '
6. If §(r) goes through a maximum value and starts to reduce, the systen.l is
. regarded as stable. It is unstable if & (¢) continues to increase. Calculation

is ceased after a suitable length of time. . .

An important numerical method of calculating 6(1) from .the swing equation
will be given in Section 12.9. For the single machine mﬁmte. bu§ bar system,
stability can be conveniently determined by the equal area criterion presented

in the following section.
12.8 EQUAL AREA CRITERION

In a system where one machine is swinging with resp‘ect to an mﬁmte blt.th, it
is possible to study transient stability by means of a simple criterion, without
resorting to the numerical solution of a swing equation.
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I
Consider the swing equation

2
P : .
3;20: = MI(P”, -P,)= «A—;—; P, = accelerating power
M = — in pu system (12.53)
f

0 -

t
Fig. 12.18 Plot of 6 vs t for stable and unstable systems

If the system is unstable & continues to increase indefinitely with time and the
machine loses synchronism. On the other hand, if the system is stable, &(z)
performs oscillations (nonsinusoidal) whose amplitude decreases in actual
practice because of damping terms (not included in the swing equation). These
two situations are shown in Fig. 12.18. Since the system is non-linear, the
nature of its response [§(f)] is not unique and it may exhibit instability in a
fashion different from that indicated in Fig. 12.18, depending upon the nature
and severity of disturbance. However, experience indicates that the response
&(#) in a power system generally falls in the two broad categories as shown in
the figure. It can easily be visualized now (this has also been stated earlier) that
for a stable system, indication of stability will be given by observation of the
first swing where §will go to a maximum and will start to reduce. This fact can
be stated as a stability criterion, that the system is stable if at some time

d—§ = (12.54)
ds

and is unstable, if
d~6 >0 (12.55)

dz
for a sufficiently long time (more than 1 s will generally do).

Power System Stability I%

The stability criterion for power systems stated above can be. converted intc
a simple and easily applicable form for a single machine infinite bus system.

. . dé
Multiplying both sides of the swing equation by (25} we get

, 48 d’6 2R, d8

dt  di? M dt

Thtegrating, we have

2 §
g =ijpad5
dt M;

0
1
" ;
L ijpa dé (12.56)
o dt MJSu

where ¢, is the initial rotor angle before it begins to swipg due to Qistuybance.
FromOEqs. (12.55) and (12.56), the condition for stability can be written as

2

é

2

= =0
J&d&

5
or [P.ds =0 (12.57)
60 . .
The condition of stability can therefore be stated as: the system is gtable if th(;E
area under P, (accelerating power) — ¢ curve reduces to zero at some value :]
4. In other words, the positive (accelerating) area under‘ P,-6 cur\ie m'ust. equ .
‘the negative (decelerating) area and hence the name ‘equal area’ criterion o

,stability. ' N .
' To illustrate the equal area criterion of stability, we now c':onm'der several
types of disturbances that may occur in a single machine infinite bus bar

system.
Sudden Change in Mechanical Input

Figure 12.19 shows the transient model of a single machine tied to infinite bus
bar. The electrical power transmitted is given by

|48 Infinite
7 E : X'y X bus bar
+ =) ¥ 21
o ' V|Z£0°

Fig. 12.19
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LE'1 VI
P,=———

Under steady operating condition
Pm() =Pe()= Pmax Siné})

in §= P, sind

Pe
o
»/ e
0 A
b
P
'm1 Sa
a4
R i
bo &4 b2 T é
wg ——> we :
L w>uk
o
W <ws

Fig. 12.20 P, - §diagram for sudden increase in mechanical input to
generator of Fig. 12.19

This is indicated by the point a in the P, - § diagram of Fig. 12.20.
Let the mechanical input to the rotor be suddenly increased to P, (by
opening the steam valve). The accelerating power P, = P, — P, causes the

rotor speed to increase (w> w,) and so does the rotor angle. At angle &,

P,=P,, - P, (=P, sin 6,) = 0 (state point at b) but the rotor angle continues

to increase as w> wj,. P, now becomes negative (decelerating), the rotor speed

begins to reduce but the angle continues to increase till at angle &, w= w, once

again (state point at c. At c), the decelerating area A, equals the accelerating
2]

area A, (areas are shaded), i.e., I P, dé=0. Since the rotor is decelerating,
4o

the speed reduces below w), and the rotor angle begins to reduce. The state point

now traverses the P, —  curve in the opposite direction as indicated by arrows

in Fig. 12.20. It is easily seen that the system oscillates about the new steady

state point b (6= ¢;) with angle excursion up to & and & on the two sides.

These oscillations are similar to the simple harmonic motion of an inertia-spring

system except that these are not sinusoidal. ,

As the oscillations decay out because of inherent system damping (not
modelled), the system settles to the new steady state where

P, = P,= Py, sin §

Power System Stability  laass

From Fig. 12.20, areas A, and A, are given by

6
A1=J (Pml_Pe)d5
&

b
Ay=[ (P, - Py)dd
&
For the system to be stable, it should be possible to find angle & ’such that
A, = A,. As P, is increased, a limiting condition is finally reach'ed whe'n. Ay
ec;uals the area above the P, line as shown in Fig. 12.21. Under this condition,
&, acquires the maximum value such that

P
b = Gy = T— 6= T - sin PL‘ (12.58)

max

0 - b &4 &

Fig. 12.21 Limiting case of transient stability with mechanical input
suddenly increased

Any further increase in P,,| means that the area available for A, is‘lgss than A,
so that the excess kinetic energy causes éto increase beyond Pomt ¢ and the
decelerating power changes over to accelerating power, with the syste:
consequently becoming unstable. It has thus been. shown l?y use of Fhe equ
area criterion that there is an upper limit to suddet_l mcrzallse in mechanical input
- system in question to remain stable.

(P”ﬂ m:;"gi;of (l))rc trlllgtcc)ll from Figq. 12.21 that the system will remain stable even
though the rotor may oscillate beyond ¢ =.90°, so long as :che equal area
criterion is met. The condition of & = 90° is meant 'f‘or use in steady state
stability only and does not apply to the transient stability case.
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Effect of Clearing Time on Stability

Let the system of Fig. 12.22 be operating with mechanical input P,, at a steady
angle of &, (P, = P,) as shown by the point « on the P, — & diagram of Fig.
12.23. If a 3-phase fault occurs at the point P of the outgoing radial line, the
electrical output of the generator instantly reduces to zero, i.e., P, = 0 and the
state point drops to b. The acceleration area A; begins to increase and so does
the rotor angle while the state point moves along bc. At time ¢, corresponding
to angle &, the faulted line is cleared by the opening of the line circuit breaker.
The values of 7, and 4, are respectively known as clearing time and clearing
angle. The system once again becomes healthy and transmits P, = P, sin §
ie. the state point shifts to d on the original P, — & curve. The rotor now
decelerates and the decelerating area A, begins while the state point moves
along de.

P ﬁi@“‘é e | = fFF

If an angle &) can be found such that A, = A;, the system is found to be stable.
The system finally settles down to the steady operating point a in an oscillatory
manner because of inherent damping.

Pe [
Pmax o
Pm %
N\ A1 ,
l AN T
" \\\ )
__bRNRNe _
o ¢ b1 T 5
P¢=0 T
(3-phase fault) Clearing

angle
Fig. 12.23

a1 2
3

Power System Stability me‘_

The value of clearing time corresponding to a clearing angle can be
established only by numerical integration except in this simple case. The equal
area criterion therefore gives only qualitative answer to system stability as the
time when the breaker should be opened is hard to establish.

Po 1}

Pmax

Prm

50 6cr 5max ) &

Critical clearing
angle

Fig. 12.24 Critical clearing angle

As the clearing of the faulty line is delayed, A, increases and 50 does 6 to
find A, = A, till §; = §,,, as shown in Fig. 12.24. For a clearing time (or angle)
larger than this value, the system would be unstable as A, < A,. The maximum
allowable value of the clearing time and angle for the system to remain stable
are known respectively as critical clearing time and angle.

For this simple case (P, = 0 during fault), explicit relationships for 4,
(critical) and ¢, (critical) are established below. All angles are in radians.

It is easily seen from Fig. 12.24 that -

bnax =T = b ' (12.59)
and P, =P, sin & (12.60)
Now
65(
A= | -0 6= P, (- &
&
and
Jmax
Ay = [ (Ppasin 6- P,)dé

6

or

= Py (€08 8 —cos 6 — P (Gpae — 6
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1
For the system to be stable, A, = A, which yields

P
cos dy = —"— (... — &) + cos Omax (12.61)
Pmax
where s = critical clearing angle
Substituting Eqs. (12.59) and (12.60) in Eq. (12.61), we get
b =cos™ [(m - 24) sin & — cos 4] (12.62)
During the period the fault is persisting, the swing equation is
d*5 _xf

T PuP=0 (12.63)

Integrating twice

5=7r—f Pml‘2+ &

2H
or =L pp & (12.64)
cr 2H m” ¢cr .
whege

te = critical clearing time

é, = critical clearing angle
From Eq. (12.64)

t = /ﬁ(ﬁcfrp;@ (12.65)
T m

where ¢, is given by the expression of Eq. (12.62)

An explicit relationship for determining ¢, is possible in this case as during
the faulted condition P, = 0 and so the swing equation can be integrated in
closed form. This will not be the case in most other situations.

Sudden Loss of One of Parallel Lines

Consider now a single machine tied to infinite bus through two parallel lines as
in Fig. 12.25a. Circuit model of the system is given in Fig. 12.25b.

Let us study the transient stability of the system when one of the lines is
suddenly switched off with the system operating at a steady load. Before
switching off, power angle curve is given by

_ _ENV]
X, + X, 1K,
Immediately on switching off line 2, power angle curve is given by

lE'NIVI
=—=——35

sin §= P, sind

ell m5=PmaxHSHl§

) Infinite

’W—O i —{ bus

Pn 1T : IVico°
(a

)

. X4
ey, 211
1 Switched off |Vic0°
P
" iy < 211 i [
X2

(b)

Fig. 12.25 Single machine tied to infinite bus through two parallel lines

Both these curves are plotted in Fig. 12.26, wherein P_,,; < P .. as (X, + X;)
> (X, + X, Il X;). The system is operating initially with a steady power transfer
P,= P, at a torque angle & on curve 1. . . ' .
Immediately on switching off line 2, the electpcal operatmg_ pomt' shifts to
curve II (point b). Accelerating energy corresponding to area A, is put into rotor
followed by decelerating energy for &> ¢,. Assuming that an area A,
corresponding to decelerating energy (energy out of .rotor) can be found such
that A, = A,, the system will be stable an‘d }mll finally operate at. c
corresponding to a new. rotor angle & > &, This is so because a single line
offers larger reactance and larger rotor angle is needed to transfer the same

steady power.

Pet / P (both tines in)
Az
1
Pm
— Pe” (lineZoul)
0 s 61 6 ) w 6

Fig. 12.26 Equal area criterion applied to the opening of one of the two
lines in parallel
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It is also easy to see that if the steady load is increased (line P, is shifted
upwards in Fig. 12.26), a limit is finally reached beyond which decelerating
area equal to A, cannot be found and therefore, the system behaves as an
unstable one. For the limiting case of stability, 6 has a maximum value given
by

6 =4

max = T = &

which is the same condition as in the previous example.
Sudden Short Circuit on One of Parallel Lines
Case a: Short circuit at one end of line

Let us now assume the disturbance to be a short circuit at the generator end of
line 2 of a double circuit line as shown in Fig. 12.27a. We shall assume the
fault to be a three-phase one. :

X
IE)28 , 00—
7;_/:(\ Xg g Infinite
= =] b= — bus
Prm ' V)20
7 B0 - 1
y Xz
(a)
, Xy :
JEKs x5 AT
Fm : N N B N —,W""
: 7
(b)

Fig. 12.27 Short circuit at one end of the line

Before the occurrence of a fault, the power angle curve is given by
_ 1E'NVI
47X, + XX,
which is plotted in Fig. 12.25.
Upon occurrence of a three-phase fault at the generator end of line 2 (see
Fig. 12.24a), the generator gets isolated from the power system for purposes of
power flow as shown by Fig. 12.27b. Thus during the period the fault lasts,
Py =0
The rotor therefore accelerates and angles & increases. Synchronism will be
lost unless the fault is cleared in time.

The circuit breakers at the two ends of the faulted line open at time t
(corresponding to angle &), the clearing time, disconnecting the faulted line.

sin §= P, siné

| e,

Power System Stabiiity m

The power flow is now restored via the healthy line (through higher line
reactance X, in place of X, Il X,); with power angle curve

_LE'IVI

XX,

Obviously, Pp,ar < Ppayx- The rotor now starts to decelerate as shown in

Fig. 12.28. The system will be stable if a decelerating area A, can be found

equal to accelerating area A before § reaches the maximum allowable value

Smax- As area A; depends upon clearing time 7, (corresponding to clearing angle

&), clearing time must be less than a certain value (critical clearing time) for

the system to be stable. It is to be observed that the equal area criterion helps

to determine critical clearing angle and not critical clearing time. Critical

clearing time can be obtained by numerical solution of the swing equation

(discussed in Section 12.8).

sin §= P, . sind

P
Py, prefault (2 lines)
~
e

_ P, postfault (1 line)

\,/ Pent

0 8 b ’ 82 Bmax w )

Fig. 12.28 Equal area criterion applied to the system of Fig. 12.24a,
| system normal, 1l fault applied, Il faulted line isolated.

It also easily follows that larger initial loading (P,,) increases A, for a given
clearing angle (and time) and therefore quicker fault clearing would be needed
to maintain stable operation.

Case b: Short circuit away from line ends

When the fault occurs away from line ends (say in the middle of a line), there
is some power flow during the fault though considerably reduced, as different
from case a where P = 0. Circuit model of the system during fault is now
shown in Fig. 12.29a. This circuit reduces to that of Fig. 12.29¢ through one
delta-star and one star-delta conversion. Instead, node elimination technique of
Section 12.3 could be employed profitably. The power angle curve during fault
is therefore given by ‘

IENVI

Pe[l = XH sin §= PmaxII sin §
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X Xa X
NV 'y 1 N ;5 L AT |
(/\T r% Xe mw
(b) |

Xt

=
Lo —
00—
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8

(©
Fig. 12.29

P, and P, as in Fig. 12.28 and P, as obtained above are all plotted in Fig.
12.30. Accelerating area A, corresponding to a given clearing angle &, is less

Py
/ P, prefault (2 lines)
Pent, postfault (1 line)
P
_ Pgy, during fault
Ay N /__“\ @l
v ! =
0 bo bc b Smax 'rr

Fig. 12.30 Fault on middle of one line of the system of Fig. 12.24a
with 6, < &,

in this case, than in case a, giving a better chance for stable operation. Stable
system operation is shown in Fig. 12.30, wherein it is possible to find an area
A, equal to A, for & < &g As the clearing angle 6, is increased, area
A, increases and to find A, = A, & increases till it has a value §,,, the
maximum allowable for stability. This case of critical clearing angle is shown
in Fig. 12.31.

Pe

_Pg;, prefault (2 lines)
>

ol

- Pemn postfault (1 line)

Pen, during fault

82 = Bmax ™ b

|
Critical clearing
angle

Fig. 12.31 Fault on middie of one line of the system of Fig. 12.2\4a, case of
critical clearing angle

Applying equal area criterion to the case of critical clearing angle of Fig. 12.31,
we can write

‘smnx

5#[
f (P — Pt Sin )dé = j (P o Sin 86— P,) d6
b b

where

gy = T — Sin”" ( Fn J (12.66)
max I

Integrating, we get

4

max

b

(Pps + Praxar €0880) |+ (Prgxn €08 b+ P,6) =0
s, ber
or
P,, (8, — &) + P (cos O — €OS &)
+ P, (8pax — Ou) + Praxmm (€08 Gy — €08 ) =0
or
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cos 8. = Pm ((gmax - 50)—Pmaxll COos 50 + PmaxIII cos 6max (1267)
“ Praxin = P
x I

ma; max II

Critical clearing angle can be calculated from Eq. (12.67) above. The angles in
this equation are in radians. The equation modifies as below if the angles are
in-degrees. '
z_
180

max

P (i = 8) = Py €08 5y + P ax 1t COS O

cos Oy = 7

max Il ~ Pmax n

Case c: Reclosure

If the circuit breakers of line 2 are reclosed successfully (i.e., the fault was a
transient one and therefore vanished on clearing the faulty line), the power
transfer once again becomes

. Py =Py = Ppyisin §
Since reclosure restores power transfer, the chances of stable operation

improve. A case of stable operation is indicated by Fig. 12.32.
For critical clearing angle

O = = T~ sin”! (P_/P,

maxI)
[ S
| Pp= Py sin 8 d6 = | P sin 6- Py d6
& - .
’ Simax
+ [ Py sin 6- P) d6
b,
Py

oy

P
(Clearing angle)

(Angle of reclosure )

Fig. 12.32 Fault in middle of a line of the system of Fig. 12.27a

where #,.= ¢, + T; T = time between clearing and reclosure.

Power System Stability

Exarie 127

Give the system of Fig. 12.33 where a three-phase fault is applied at the point
P as shown.

j0.5
I SILR ‘ .
; i0.05 nfinite
j0.25 J bus
(T , 04 p 2 |VE1£0
|E’|=1.2pu
Fig. 12.33

Find the critical clearing angle for clearing the fault with simultaneous opening
of the breakers 1 and 2. The reactance values of various components are
indicated on the diagram. The generator is delivering 1.0 pu power at the instant
preceding the fault.

Solution |
With reference to Fig. 12.31, three separate power angle curves are involved.
1. Normal operation (prefault) N
05%x04
= T .05
X; =025+ 05104 +0
=(.522 pu
!
P, = I_E_Msing_—_l'z_)(lsin 5
¢ X, 0.522
=23 siné )
Prefault operating power angle is given by
1.0 =23 sin §
or & = 25.8° = 0.45 radians

II. During fault

It is clear from Fig. 12.31 that no power is transferred during fault, i.e.,

Pel] =0
jo5
, 211
jo.25 j0.05
AR
O j0.4 i fﬁp—f V=120
Bk 4115 - -

Ein 4192 24



Toamm.

im Modern Power System Analysis

III. Post fault operation (fault cleared by opening the faulted
Iline)

XHI =0.25 + 05 +0.05 = 0.8

12x1.0 . .
Po= sin §=1.5sin § (iii)
Py 4
P el
/
Pem
Az
Pn=1.0
§
& Pei=0
0 Sor W
$6-0.45 rad max=2.41 rdd

Fig. 12.35

The maximum permissible angle &,,, for area A, = A, (see Fig. 12.35) is
given by

F) 1

. 1
ax = T — 8in E = 2.41 radians

Applying equal area criterion for critical clearing angle &,
A =P, (4, - &)
=1.0 (4, - 045) = &, - 045
5mlx
A, = j Py -P,)dé
5rr
2.41
= _[ (15sin 6-1) dé
b

2.41
=-15cos 6— &

é,

cr

3
@
o
5
5

=- 1.5 (cos 241 — cos §,) — (241 - 4,)
=15cos 4, + &, — 1.293

cr

Setting A, = A, and solving
6, -045=15cos &, + &, - 1293

or cos &, =0.843/1.5 = 0.562

or b, =55.8°
The corresponding power angle diagrams are shown in Fig. 12.35.

T

Eﬁ;amﬂ._e 12.8

Find the critical clearing angle for the system shown in Fig. 12.36 for a three-
phase fault at the point P. The generator is delivering 1.0 pu power under
prefault conditions.

j0.15 j0.15
2 j0.28 2
Infinite
i j0.25 3 bus
|VE1.0£0°

B2 pu ﬂ%%‘] jo14 P jola D—§
p, 5 '

Jjo.15 jo.15
Fig. 12.36

Solution
I Prefault operation Transfer reactance between generator and infinite
bus is

X, =025 + 0.17 + ﬂﬁw =071
1.2 x1
= sin §=1.69 sin § i
el 071 ( )
The operating power angle is given by
1.0 = 1.69 sin §,
or & =0.633 rad

IT. During fault The positive sequence reactance diagram during fault is
presented in Fig. 12.37a. -
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j0.15 jo28 jo15
j0.25 j0.47
— KT
. j015  jo14 jo14  joA5 .
EN=12 V=1.0.0°

by

(a) Positive sequence reactance diagram during fault

jo.25 j0.145 jo14s 7 joa7

N o
O E=12 ,

(b) Network after delta-star conversion

T
|E/=1.2 5 ) % S l)v=1.040°
[ S S |

(c) Network after star-delta conversion

Fig. 12.37

| j0.0725 V=1.0£0°

Converting delta to star*, the reactance network is changed to that of Fig.
12.37(b). Further, upon converting star to delta, we obtain the reactance
network of Fig. 12.37(c). The transfer reactance is given by

(0.25+40.145) 0.0725+ (0.145 4 0.17) 0.0725 + (0.25 + 0.145)

(0.145+0.17)
XH =
0.075
= 2424
P = 1224’; sin 6= 0495 sin & " (if)

III. Postfault operation (faulty line switched off)
Xy =025+ 0.15 + 0.28 + 0.15 + 0.17 = 1.0

*Node climination technique would be used for complex network.

Power System Stability

1.2x1

sin §=1.2sin §

Poy =

With reference to Fig. 12.30 and Eq. (12.66), we have
é,

o = — s = 2155 rad
12

To find the critical clearing angle, areas A; and A, are to be equated.
5

cr

A, =10 (8, - 0.633) - j 0495 sin 6ds

&
and
Smax
Ay= [ 12sin 6d6-1.0 2155 - &)
6cr
Now
A=A,
or

bder
8, =0.633 - j 0495 sin §d6
0.633

2.155
- J' 1.2 sin §dé—2.155 + &

cr
ber
4, 2.155

T =_12cos §| —2155
0.633 S

or — 0.633 + 0.495 cos &, —0.399 = 0.661 + 1.2 cos &, — 2.155
or cos 4, = 0.655
or 8, =49.1°

or — 0.633 + 0.495 cos &

Example _?3_2.9‘

A generator operating at 50 Hz delivers 1 pu power to an infinite bus through
a transmission circuit in which resistance is ignored. A fault takes place
reducing the maximum power transferable to 0.5 pu whereas before the fault,
this power was 2.0 pu and after the clearance of the fault, it is 1.5 pu. By the
use of equal area criterion, determine the critical clearing angle. :

Solution

~ All the three power angle curves are shown in Fig. 12.30.
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Here Pooa =200pu, Py =0.5puand Py,m= 1.5 pu
Initial loading P,, = 1.0 pu

& = sin™! ( i ):sm'l%:O.S% rad

max ]

bpax = sin™? (P—PLJ

max [T
.1 1
=g —sin —=241rad
1.5

Applying Eq. (12.67)
cos &, 1.0(2.41-0.523) —1055 c8550.523 +1.5cos2.41

70.3°

I

= (0.337

or Oy

12.9 NUMERICAL SOLUTION OF SWING EQUATION

In most practical systems, after machine lumping has been done, there are still
more than two machines to be considered from the point of view of system
stability. Therefore, there is no choice but to solve the swing equation of each
machine by a numerical technique on the digital computer. Even in the case of
a single machine tied to infinite bus bar, the critical clearing time cannot be
obtained from equal area criterion and we have to make this calculation
numerically through swing equation. There are several sophisticated methods
now available for the solution of the swing equation including the powerful
Runge-Kutta method. Here we shall treat the point-by-point method of solution
which is a conventional, approximate method like all numerical methods but a
well tried and proven one. We shall illustrate the point-by-point method for one
machine tied to infinite bus bar. The procedure is, however, general and can be
applied to every machine of a multimachine system.
Consider the swing equation
2
3725 B _Al—l—(P"' ~ B, siné)=P,/ M,

(M= _G—Hor in pu system M = EJ
T f

The solution &(¢) is obtained at discrete intervals of time with interval spread
of At uniform throughout. Accelerating power and change in speed which are
continuous functions of time are discretized as below:

1. The accelerating power P, computed at the beginning of an interval is

assumed to remain constant from the middle of the preceding interval to the -

middle of the interval being considered as shown in Fig. 12.38.

i
2. The angular rotor velocity w = d#dt (over and above synchronous velocity
w,) is assumed constant throughout any interval, at the value computed for the
middle of the interval as shown in Fig. 12.38.
Pa

Pan-2) {----—-- —L< / Discrete solution

P
a(n-1) Continuous solution

Pa(n]
, t
n-2 n-1 n At
w A . . Continuous solution
Discrete solution / B
Lo I R O R T -.
Wngj2 [ + A"-
B / Wn-1/27~Wn-3/2
I ot
2 n32 n 12 n At
& A
e Al el Al ;-]/
& e e e e AS--

o

Abp /

i

IM,H a
Sp2 /)?/

n-2 n-1 n

At
Fig. 12.38 Point-by-point solution of swing equation

In Fig. 12.38, the numbering on #/Ar axis pertains to the end of intervals. At
the end of the (n —1)th interval, the acceleration power is

Pa (n-1)~ Pm - Pmax sin én-l (12.68)

where §,_; has been previously calculated. The change in velocity (w = d d/df),
caused by the P, ;), assumed constant over At from (n-3/2) to (n—1/2) is

Wy 12 = Wpan = (AUM) P (12.69)
The change in & during the (n—1)th interval is
A6, = 0 = bp= Atwyap (12.70a)
and during the nth interval
Ab, =6, - 6= Dtw,_1pp (12.70b)
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Subtracting Eq. (12.702) from Eq. (12.70b) and using Eq.-(12.69), we get

2
Ag = Ag,, + LD

Punoyy (12.71)

Using this, we can write
b6,=06,+ A8 , - (12.72)

The process of computation is now repeated to obtain P,,), A§,,; and 6,,,. The
time solution in discrete form is thus carried out over the desired length of time,
normally 0.5 s. Continuous form of solution is obtained by drawing a smooth
curve through discrete values as shown in Fig. 12.38. Greater accuracy of
solution can be achieved by reducing the time duration of intervals.

The occurrence or removal of a fault or initiation of any switching event
causes a discontinuity in accelerating power P,. If such a discontinuity occurs
at the beginning of an interval, then the average of the values of P, before and
after the discontinuity must be used. Thus, in computing the increment of angle
occurring during the first interval after a fault is applied at ¢ = 0, Eq. (12.71)
becomes

(AD® | Pooy
Aéb = +
oM 2
where Py, is the accelerating power immediately after occurrence of fauit.

Immiediately before the fault the system is in steady state, so that P ;- = 0 and
& is a known value. If the fault is cleared at the beginning of the nth interval,
in calculation for this interval one should use for P,,_; the value [P, -
+ P, 1)), where P, ;)- is the accelerating power immediately before clearing
and P,,_;y, is that immediately after clearing the fault. If the discontinuity
occurs at the middie of an interval, no special procedure is needed. The
increment of angle during such an interval is calculated, as usual, from the
value of P, at the beginning of the interval.

The procedure of calculating solution of swing equation is illustrated in the
following example.

Example, 1210

A 20 MVA, 50 Hz generator delivers 18 MW over a double circuit line to an

infinite bus. The generator has kinetic energy of 2.52 MJ/MVA at rated speed.
The generator transient reactance is X7; = 0.35 pu. Each transmission circuit
has R = 0 and a reactance of 0.2 pu on a 20 MVA base. IE’l = 1.1 pu and
infinite bus voltage V = 1.0 Z0° A three-phase short circuit occurs at the mid
point of one of the transmission lines. Plot swing curves with fault cleared by
simnltaneous opening of breakers at both ends of the line at 2.5 cycles and 6.25
cycles after the occurrence of fault. Also plot the swing curve over the period
of 0.5 s if the fault i$ sustained.

Power System Stability m

Iy 14imm afreas Qtain tanasle

Al n e
ouviuaor pelorc wo

can apply the step-by-step method, we need to calculate
the inertia constant M and the power angle equations under prefault and
postfault conditions.

Base MVA = 20

H _ 10x2.52
180 f 180 x50

= 2.8 x 107 s%/elect degree

Inertia constant, M{pu) =

I Prefault

X, = 035 + % = 045

Pelzpmaxl sin 6
1
= —(')~~—sin 6 =244 sin & @)

Prefault power transfer = % = 0.9 pu

Initial power angle is given by
2.44 sin & = 0.9
or 8 = 21.64° )

Il During fault A positive sequence reactance diagram is shown in Fig:
12.39a. Converting star to delta, we obtain the network of Fig. 12.39b, in which

0.35x0.1+0.2x0.1+0.35x0.2

X = 01 = 1.25 pu
PeII=PmaxIISin 6
= LIX1 g §=088 sin § (ii)
1.25
j0.35 Xi
{ EET ﬁ]*?ﬂqﬁj—r —
- ’L\ =) =) L
Q?D (1e1) = 3 i1 ()
([ ([T

(a) - ®
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|
I Postfaulr With the faulted line switched off,

P = Pryaxm sin 8
= XL o 5= 210616 6 (i)
0.55
Let us choose Ar= 0.05 s

The recursive relationships for step-by-step swing curve calculation are
reproduced below.

Pa -1~ Pm - Pmax sin én—l (IV)
2

g =06, + L p )

8= 64+ A6, (vi)

Since there is a discontinuity in P, and hence in P, the average value of P,
must be used for the first interval.

P,0_)=0puand P, (0,) =09 - 0.88 sin 21.64° = 0.576 pu

0+0.576

P, 0 = 0.288 pu

avcrage) =
Sustained Fault

Calculations are carried out in Table 12.2 in accordance with the recursive
relationship (iv), (v) and (vi) above. The second column of the table shows P
the maximum power that can be transferred at time ¢ given in the first column.
P in the case of a sustained fault undergoes a sudden change at ¢ = 0, and
remains constant thereafter. The procedure of calculations is illustrated below
by calculating the row corresponding to ¢ = 0.15 s.

(0.1 sec) = 31.59°
P = 0.88
sin 4 (0.1 s) = 0.524
P,(0.1s)="P,, sin §(0.1 s)=0.88 x 0.524 = 0.461
P, (0.1 s)=09 - 0.461 = 0.439

2
(—AMLP‘, (0.1 s) = 8.929 x 0.439 = 3.92°

2
§(0.15 )= A6 (0.1 s) + LAML P, (0.1 s)
= 738 + 3.92° = 11.33°
50.158) = §(0.18) + AS(0.15 5)
= 31.59° + 11.30° = 42.89°

Power System Stability

which it is obvious that the system is unstable.

160T
140
) i |
1201 Substained fau t.\
8100,
© —
L 80|
2
© - Fault cleared
) at 6.25 cycles
T 60—
2
40 |-
201 fault cleared
L at 2.5 cycles
1 P A T O R 1
Oo' 0.1 0.2 03 04 05 0.6
t(s) —

Fig. 12.40 Swing curves for Example 12.10 for a sustained fault and for
clearing in 2.5 and 6.25 cycles

Table 12.2 Point-by-point computations of swing curve for sustained fault,

At=0.05s
At)?
t Prox sin & P,=P,,siné6 P=09-P, ¢ A}) P, Aé 6
sec pu pu pu = 8929 P, deg deg
deg
0_ 244  0.368 0.9 0.0 -— — 21.64
0, 0.88  0.368 0.324 0.576 — — 21.64
O,y — 0.368 — 0.288 2.57 2.57 21.64
0.0g5 0.88 041 0.361 0.539 4.81 7.38 2421
0.10 0.88 0.524 0.461 0.439 3.92 11.30 31.59
0.15 0.88 0.680 0.598 0.301 2.68 13.98  42.89
0.20 0.88 0.837 0.736 0.163 1.45 1543  56.87
0.25 0.88 0.953 0.838 0.06 0.55 15.98 72.30
030 0.88 0.999 0.879 0.021 0.18 16.16  88.28
0.35 0.88 0.968 0.852 0.048 0.426 16.58 104.44
0.40 0.88 0.856 0.754 0.145 1.30 17.88 121.02
045 088 0.657 0.578 0.321 2.87 20.75 138.90

050 088 — — — = = L
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I
Fault Cleared in 2.5 Cycles

Time to clear fault = % =0.05 s

Ps suddenly changes from 0.88 at £ = 0.05 to 2.0 at 7 = 0.05,. Since the
discontinuity oceurs at the beginning of an interval, the age value of P, will
be assumed to remain constart from 0.025 s to 0.075 s. The rest of the
procedure is the same and complete calculations are shown in Table 12.3. The
swing curve is plotted in Fig. 12.40 from which we find that the generator

undergoes a maximum swing of 37.5° but is stable as & finally begins to
decrease.

Table 12.3 Computations of swing curves for fault cleared at 2.5 cycles
(0.05s), At=0.05s

{ P S 8 PP sind P,=09-P, -{% P, A5 6
sec pu pu pu = 8929 P, deg deg
deg

0 244 0.368 0.9 0.0 —_ — 2164
0, 0.88  0.368 0.324 0.576 = — 2164
Ohy — 0368 — 0.288 2.57 2.57  21.64
0.05. 0.88 041 0.36 0.54 == — 2421
0.05, 2.00 0.41 0.82 0.08 — — 2421
0.05,,, 0.31 2.767 533 2421
0.10 200 0.493 0.986 - 0.086 - 0.767 456 2954
0.15 200 056 1.12 -022 - 1.96 2.60  34.10
020 2.00 0597 1.19 -029 - 2.58 0.02 36.70
025 200 0597 1.19 -0.29 -258 -256 37172
030 200 0.56] 112 - 022 - 196  -452 3416
035 200 0494 0.989 - 0.089 ~0.79  -531 2964
040 200 041 0.82 0.08 0.71 ~4.60 2433
045 2.00 0337 0.675 0.225 2.0 -26 19.73
0.50 17.13

Fault Cleared in 6.25 Cycles

Time to clear fault = % =0.125 s

Since the discontinuity now lies in the middle of an interval, no special
procedure is necessary, as in deriving Eqs. (iv) — (vi) discontinuity is assumed
to occur in the middle of the time interval, The swing curve as calculated in
Table 12.4 is also plotted in Fig. 12.40. It is observed that the system is stable
with a maximum swing of 52.5° which is much larger than that in the case of
2.5 cycle clearing time.
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I
To find the critical clearing time, swing curves can be obtained, similarly, for
progressively greater clearing time till the torque angle ‘6‘ increase§ without
bound. In this example, however, we can first find the critical cleaqng angle
using Eq. (12.67) and then read the critical clearing time erm the swing curve
corresponding to the sustained fault case. The values obtained are:

Critical clearing angle = 118.62°
Critical clearing time = 0.38 s

Table 12.4 Computations of swing curve for fault cleared at
6.25 cycles (0.125s), At=0.05s

i ns P=09-p, B0p 45 g
t Poo Sin & P,=P,. sin .= 0.9- P, o
sec pu pu pu = 8929 P, deg deg

deg

0 244  0.368 0.9 0.0 - - ., 2164
0; 0.88  0.368 0.324 0.576 - - 21.64
Opg - 0.368 - 0.288 2.57 257 21.64
005 088 041 0.361 0.539 4.81 7.38 2421
0.10 0.88 0.524 0.461 0.439 3.92 11.30  31.59
0.15 2.00 0.680 1.36 - 4.46 - 4.10 720 42.89
020 2.00 0.767 1.53 - 0.63 - 5.66 1.54  50.09
025 2.00 0.78 1.56 - 0.66 - 5.89 - 435 51.63
0.30 2.00 0.734 1.46 - 0.56 - 5.08 -943 47.28
035 2.00 0.613 1.22 -0.327 -292 -1235 3785
040 2.00 0.430 0.86 0.04 035 - 12.00 2??9
045 2.00 0.233 0.4606 0.434 3.87 - 813 1350
0.50 2.00 5.37

12.10 MULTIMACHINE STABILITY

From what has been discussed so far, the following steps easily follow for
determining multimachine stability. .
1. From the prefault load flow data determine E’, voltage behind transient
reactance for all generators. This establishes generator emf magnitudes
IE,| which remain constant during the study and initial rotor arolgle
& = ZE,. Also record prime mover inputs to generators, P,, = P%;.
2. Augment the load flow network by the generator transient reactances.
Shift network buses behind the transient reactances.
3. KFnd Ygyg for various network conditions—during fault, post fault
(faulted line cleared), after line reclosure.
4. For faulted mode, find generator outputs from power angle equations
(generalized forms of Eq. (12.27)) and solve swing equations step by
step (point-by-point method).
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5. Keep repeating the above step for post fault mode and after line
reclosure mode.

6. Examine &(r) plots of all generators and establish the answer to the
stability question.

The above steps are illustrated in the following example.

Example 12.11

A 50 Hz, 220 kV transmission line has two generators and an infinite bus as
shown in Fig. 12.41. The transformer and line data are given in Table 12.5. A
three-phase fault occurs as shown. The prefault load flow solution is presented

in Table 12.6. Find the swing equation for each generator during the fault
period.
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(2) tvfmaza.zas" @ V3=1.02./7.16°
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Fig. 12.41

Data are given below for the two generators on a 100 MVA base.
Gen 1 500 MVA, 25 kV, X/ = 0.067 pu, H = 12 MJ/MVA
Gen 2 300 MVA, 20 kV, X/ = 0.10 pu, H = 9 MI/MVA
Plot the swing curves for the machines at buses 2 and 3 for the above fault

which is cleared by simultaneous opening of the circuit breakers at the ends of
the faulted line at (i) 0.275 s and (ii) 0.08 s.
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Table 12.5 Line and transformer data for Ex. 12.11. All values are in pu on

220 kV, 100 MVA base

Bus to bus Series Z Half line charging
R X
i 0.11 0.113
Line 5.1 0004 00235 0098
Line 4-1 0.007 0.04 0.041
Trans: 2-4 — 0.022 —
Trans: 3-5 — 0.04 —
Table 12.6 Bus data and prefault load-flow values in pu on 220 kV,

100 MVA base

S.No.  Voltage Bus Voltage Generation Load
and Polar type
Bus Form Real Imaginary P Q P 0
No. e f
1 1.0£0° Slack  1.00 0.0 - 3.8083 -0.2799 O 0
2 1.03£8.35° PV 1.0194 0.1475 3.25 0.6986 O 0
3 1.0247.16° PV 1.0121 0.1271 2.10 03110 O 0
4 1.0174£4.32° PQ 1.0146 0.767 0 1.0 § 1.0 044
5 1.0112£2.69° PQ 1.0102 0.0439 0 0 0.5 0.16

Solution Before
internal voltages.

determining swing equations, we have to find transient

The current into the network at bus 2 based on the data in Table 12.6 is

- h-J0 _ 325-;06986
= g .03/ —8.23519°

VZ
3.25— j0.6986
1.03 £ —8.23519°

1.0340929 + j0.3632368
= 1.0960333 £19.354398° = 1.0960 £0.3377 rad
= 1.0 Z0° (slack bus)

x 0.067£90°

Ey= (1.0194 + j0.1475) +

E

_

21— j0.311
1.02/—7.15811°
1.0166979 + j0.335177 = 1.0705 £18.2459°
= 1.071 £0.31845 rad

x 0.1£90°

&2
!

(1.0121 + jO.1271) +

The loads at buses 4 and 5 are represented by the admittances calculated as

follows:

_ 10— 0.4

_ 0.9661 — j0.4251)
1= 10174y ¢ 4
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0.5-j0.16
Wope = =S _FE=0 .
5T 011y (0.4889 — 0.15647)

Prefault Bus Matrix

Load admittances, along with the transient reactances, are used with the [j

and Fransf(?rmer admittances to form the prefault augmented bus admitt oo
matrix which contains the transient reactances of the machines. We an;;le
ther.efore, now designate as buses 2 and 3, the fictitious internal nod;as bet o
the internal voltages and the transient reactances of the machines. Thus W‘;Ve;:

S (1‘0.06741r j0022) ~ T J1L236
Yy = j11.236 = ¥,
Vi3 = % =-j7.143
70.04 + j0.1
Yis=j7.143 = v,
Yoo = Yiu+ Yy + Vs + %‘F% + Yy

= 09660877 — j0.4250785 + 4.245 - j24.2571 + 1.4438 _
J8.8538 + jO.041 + jO.113 — j11.2359

= 6.6598977 — j44.6179

v o x - B, R
Tss=Xps+ Yyt Y+ 244 51 4y
2 2 35

= 04889 — j0.1565 + 1.4488 — i8.8538 '
+Jj0.113 % j0.098 — j7.1428 * * [eodl= R

= 8.976955 ~ j57.297202

The complete augmented prefault Yy;s matrix is shown.ifi Table 12.7.

Table 12.7 The augmented prefault bus admittance matrix for Ex. 12.11

R admittances in pu

Bus 1 oy

2 3 4 5
1 1128465243 o ——1-— % 05
11.284-j65.473 0 0 ~4.245 + j24.257 ~7.039 +
| j41.355
§ 0 -j11.2359 0 711.2359 0
0 0 j
o - j7.1428 0 7.1428
4 4245+ 24257 j11.2359 0 6.6598-44.617 il 4488
) | : | +/8.8538
5 7.039 + j41.355 0 0+ j7.1428 -1.4488 + i8.8538 8.9769
+ j57.2972
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During Fault Bus Matrix

Since the fault is near bus 4, it must be short circuited to ground. The Yg g
during the fault conditions would, therefore, be obtained by deleting 4th row
and 4th column from the above augmented prefault Ypy;5 matrix. Reduced fault
matrix (to the generator internal nodes) is obtained by eliminating the new 4th
row and column (node 5) using the relationship

Yiimewy = Yijicold) = Yincolay Yrjco1)/Yon ol
The reduced faulted matrix (Yg;5 during fault) (3 x 3) is given in Table 12.8,
which clearly depicts that bus 2 decouples from the other buses during the fault
and that bus 3 is directly connected to bus 1, showing that the fault at bus 4
reduces to zero the power pumped into the system from the generator at bus 2
and renders the second generator at bus 3 to give its power radially to bus 1.

Table 12.8 Elements of Ygyg (during fault) and Yy g (post fault)
for Ex. 12.11, admittances in pu.

Reduced during fault Ygy

Bus 1 2 3

1 5.7986-;35.6301 0 - 0.0681 + j5.1661
2 0 - j11.236 0
3 - 0.0681+ j5.1661 0 0.1362 - j6.2737

Reduced post fault Yg ¢

1 13932 - j13.8731 - 0.2214 + j7.6289 - 0.0901 + j6.0975
2 ~ 02214 + j7.6289 0.5 — j7.7898 0
3 - 0.0901 + j6.0975 0 0.1591 — j6.1168

Post Fault Bus Matrix

Once the fault is cleared by removing the line, simultaneously opening the
circuit breakers at the either ends of the line between buses 4 and 5, the prefault
Ygus has to be modified again. This is done by substituting Y5 = Y5, = 0 and
subtracting the series admittance of line 4-5 and the capacitive susceptance of

half the line from elements Y, and Yss.
Y44(post fault) = Y, 44(prefault) ~ Yys — Bysl2
= 6.65989 — j44.6179 — 1.448 + j8.853 — jO.113
=5.2111 - j35.8771
Similarly, Ysspost fauiy = 7-5281 — j48.5563

The reduced post fault Yg;g is shown in the lower half to Table 12.8. It may
be noted that O element appears in 2nd and 3rd rows. This shows that,
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physically, the generators 1 and 2 are not interconnected when line 4-5 is
removed.

During Fault Power Angle Equation
P,=0
P, = Re [Y3E/E{* + E{* Y, E{]; since Yy, = 0
= E{? Gz + IE]| IE{| 1Yyl cos (&, — 6,)
= (1.071)% (0.1362) + 1 x 1.071 x 5.1665 cos (6, — 90.755%)
P, =0.1561 + 5.531 sin (& — 0.755°)
Postfault Power Angle Equations
Py = 1EJP Gy + |EJLIEJ 1Y)l cos (& — 6,)
= 1.0962 x 0.5005 + 1 x 1.096 x 7.6321 cos (6 — 91.662°
= 0.6012 + 8.365 sin (&, ~ 1.662°)
IE{| *Gay + LE{I |EJ Y31 cos (&, — 6)
1.071% x 0.1591 + 1 x 1.071 x 6.098 cos (& - 90.8466°)
= 0.1823 + 6.5282 sin (& ~ 0.8466°)

Swing Equations—During Fault

Pe3

d’6,  180f

2
dt H,

180
(o= P)= 200 E,

2

180
= Tf (3.25 — 0) elect deg/s?

d’6, _ 180f
ar =, Fm P

180
_9i [2.1 - {0.1561 + 5.531 sin (6 — 0.755%)}]

180/
— [1:9439 = 5.531 sin (& — 0.755%] elect deg/s?

Swing Equations—Postfault

4, _180f
7 =y 13257106012 + 8.365 sin (4, - 1.662°)}] elect deg/s
d2s,

470, _180f :
— —9—[2.10—{0.1823 + 6.5282 sin(6; — 0.8466°)}Jelect deg/s?
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It may be noted that in the above swing equations, P, may be written in
general as follows:
P,=P, - P.— P, sin (6- 7

Digital Computer Solution of Swing Equation

The above swing equations (during fault followed by post fault) can be solved
by the point-by-point method presented earlier or by the Euler’s method
presented in the later part of this section. The plots of & and & are given in
Fig. 12.42 for a clearing time of 0.275 s and in Fig. 12.43 for a clearing time
of 0.08 s. For the case (i), the machine 2 is unstable, while the machine 3 is
stable but it oscillates wherein the oscillations are expected to decay if effect
of damper winding is considered. For the case (ii), both machines are stable but
the machine 2 has large angular swings.

Machine 1 is reference (Infinite bus)

Machine 2
50° :

40°

degrees —»

W
[=3
°©

Machine 3

.\‘
X

20°

100! l \ e | | | I ‘ | |
0 01 02 To.s 04 05 06 07 08 09 1.0

(0.275s fault cleared at) seconds - >

Fig. 12.42 Swing curves for machines 2 and 3 of Example 12.1 for
clearing at 0.275 s.

If the fault is a transient one and the line is reclosed, power angle and swing
equations are needed for the period after reclosure. These can be computed from
the reduced Ypyg matrix after line reclosure.
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H L [ N R
|0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.08 seconds Time in seconds —— »
-10°— Fault cleared
after 4 cycles

e

Fig. 12.43 Swing curves for machines 2 and 3 of
Example 12.11 for clearing at 0.08 s

Consideration of Automatic Voltage Regulator (AVR) and
Speed Governor Loops ‘

This requires modelling of these two control loops in form of differential
equations. At the end of every step in the stability algorithm, the programme
computes the modified values of E{ and P, and then proceeds to compute the
next step. This considerably adds to the dimensionality and complexity of
sl:nlwi!ily caleulations. To reduce the computational effort, speed control can
continue to be ignored without loss of accuracy of results.

State Variable Formulation of Swing Equations

The swing equation for the kth generator is
d*s, _
dr? H,

For the multimachine case, it is more convenient to organise Eq. (12.73) is
state variable form. Define

X1k = 6/{ = LEk/

(Poi— Poi k=1,2, ... m (12.73)

Xy = b

Then

Xk = Xy

ok = af P - Po) k=1,2, .., m (12.74)
H,
Initial state vector (upon occurrence of fault) is
By = &= ZEY
x2,=0 (12.75)

The state form of swing equations (Eq. (12.74)) can be solved by the many
available integration algorithms (modified Euler’s method is a convenient

choice).

Computational Algorithm for Obtaining Swing Curves Using
Modified Euler's Methocd

1. Carry out a load flow study (prior to disturbance) using specified
voltages and powers.

2. Compute voltage behind transient reactances of generators (E Ok) using
Eq. (9.31). This fixes generator emf magnitudes and initial rotor angle

(reference slack bus voltage v9).
3. Compute, Ypys (during fault, post fault, line reclosed).
4. Set time count r = 0.

5. Compute generator power outputs using appropriate Ygyg with the help
of the general form of Eq. (12.27). This gives P(&‘for r5 17,

Note: After the occurrence of the fault, the period is dividecg_ int(l) uniform
discrete time intervals (A#) so that time is counted as £ ), A A

typical value of Aris 0.05 s.
Compute [(x{7,%5),k =1, 2, .., m] from Egs. (12.74).
7. Compute the first state estimates for ¢ = 1 ag
x & = x Y+ i) At
k=12, ... m
x0 = A5) + 1P At
8. Compute the first estimates of £,

(r+l)

1
E{"VY = E (cos xjj g

+ j sin x
9. Compute P&Y; (appropriate Ygys and Eq. (12.72)).

10. Compute [y, £, k =1, 2, .., m] from Egs. (12.74).
11. Compute the average values of state derivatives

416, + 2]

xl(lrc)’ avg =
k=1,2,..., m

= (r) _ A[:(0) < (r+l)
Xk avg = 2[x2k + X34 ]
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ompute the final state estimates for £ = r"+1,

(rdl) _ _(r) 2 (r)
xll: ‘= xlrk+ xllz,avg’ At
k=12, ... m
D= G+ 5 A
13." Compute the final estimate for E, at t = ("D ysing
EID = [EfIcos xI*D + jsin xHD
14. Print e, xI0 )y k=1,2, .. m
15. Test for time limit (time for which swing curve is to be plotted), i.e.,
check if r> ry. Ifnot, r=r + 1 and repeat from step 5 above.
Otherwise print results and stop.

The swing curves of all the machines are plotted. If the rotor angle of a
machine (or a group of machines) with respect to other machines increases
without bound, such a machine (or group of machines) is unstable and
eventually falls out of step.

The computational algorithm given above can be easily modified to include

simulation of voltage regulator, field excitation response, saturation of flux
paths and governor action.

Stability Study of Large Systems

To limit the computer memory and the time requirements and for the sake of
computational efficiency, a large multi-machine system is divided into a study
subsystem and an external system. The study subsystem is modelled in detail
whereas approximate modelling is carried out for the external subsystem. The
total study is rendered by the modern technique of dynamic equivalencing. In
the external subsystem, number of machines is drastically reduced using various
methods—coherency based methods being most popular and widely used by
various power utilities in the world.

12.11 SOME FACTORS AFFECTING TRANSIENT STABILITY

We have seen in this chapter that the two-machine system can be equivalently
reduced to a single machine connected to infinite bus bar. The qualitative
conclusions regarding system stability drawn from a two-machine or an
equivalent one-machine infinite bus system can be easily extended to a
multimachine system. In the last article we have studied the algorithm for
determining the stability of a multimachine system.

It has been seen that transient stability is greatly affected by the type and
location of a fault, so that a power system analyst must at the very outset of a
stability study decide on these two factors. In our examples we have selected
a 3-phase fault which is generally more severe from point of view of power
transfer. Given the type of fault and its location let us now consider other
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factors which affect transient stability and therefrom draw the conclusions,
regarding methods of improving the transient stability limit of a system and
making it as close to the steady state limit as possible. .

For the case of one machine connected to infinite bus, it is easily seen from
Eq. (12.71) that an increase in the inertia constant M of the mac'hjne reduces
the angle through which it swings in a given time interval offenng thereby a
method of improving stability but this cannot be employed in practice because
of economic reasons and for the reason of slowing down the response of the
speed governor loop (which can even become oscillatory) apart from an
excessive rotor weight.

With reference to Fig. 12.30, it is easily seen that for a given clearing angle,
the accelerating area decreases but the decelerating area incrf:ases as the
maximum power limit of the various power angle curves is raised, thereby
adding to the transient stability limit of the system. The maximum steady power
of a system can be increased by raising the voltage profile of t_he system 'and
by reducing the transfer reactance. These conclusions along w1t.h the various
transient stability cases studied, suggest the following method of improving the
transient stability limit of a power system.

1. Increase of system voltages, use of AVR.

2. Use of high speed excitation systems.

3. Reduction in system transfer reactance.
4,

Use of high speed reclosing breakers (see Fig. 12.32). Modern tendency
is to employ single-pole operation of reclosing circuit breakers.

When a fault takes place on a system, the voltages at all buses are reduced.
At generator terminals, these are sensed by the automatic.vcfltage regl.llat.ors
which help restore generator terminal voltages by acting w1th1'n the excitation
system. Modern exciter systems having solid state controls quickly rf':spond to
bus voltage reduction and can achieve from one-half to one and one-half cycles
(1/2-14) gain in critical clearing times for three-phase faults on the HT bus
of the generator transformer. .

Reducing transfer reactance is another important practical method of
increasing stability limit. Incidentally this also raises system voltage profile.
The reactance of a transmission line can be decreased (i) by reducing the
conductor spacing, and (ii) by increasing conductor diameter (see Eq. (2.37)).
Usually, however, the conductor spacing is controlled by other features such as
lightning protection and minimum clearance to prevent the are from one phfase
moving to another phase. The conductor diameter can be increased by using
material of low conductivity or by hollow cores. However, normally, the
conductor configuration is fixed by economic considerations quite apart from
stability. The use of bundled conductors is, of course, an effective means of
reducing series reactance. .

Compensation for line reactance by series capacitors is an effecuv.e z_md
economical method of increasing stability limit specially for transmission
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distances of more than 350 km. The degree of series compensation, however,
accentuates the problems of protective relaying, normal voltage profiles, and
overvoltages during line-to-ground faults. Series compensation becomes more
effective and economical if part of it is switched on so as to increase the degree
of compensation upon the occurrence of a disturbance likely to cause instability.
,,Switchedfserfies—feapaei't—orssi'mui'tanemlsly decrease fluctuation of load voltages
and raise the transient stability limit to a value almost equal to the steady state
limit. Switching shunt capacitors on or switching shunt reactors off also raises
stability limits (see Example 12.2) but the MVA rating of shunt capacitors
required is three to six times the rating of switched series capacitors for the
same increase in stability limit. Thus series capacitors are preferred unless
shunt elements are required for other purposes, say, control of voltage profile.

Increasing the number of parallel lines between transmission points is quite
often used to reduce transfer reactance. It adds at the same time to reliability
of the transmission system. Additional line circuits are not likely to prove
economical unit / after all feasible improvements have been carried out in the
first two circuits.

As the majority of faults are transient in nature, rapid switching and isolation
of unhealthy lines followed by reclosing has been shown earlier to be a great
help in improving the stability margins. The modern circuit breaker technology
has now made it possible for line clearing to be done as fast as in two cycles.
Further, a great majority of transient faults ave line-to-ground in nature. It is
natural that methods have been developed for selective single pole opening and
reclosing which further aid the stability limits. With reference to Fig. 12.17, if
a transient LG fault is assumed to occur on the generator bus, it is immediately
seen that during the fault there will now be a definite amount of power transfer,
as different from zero power transfer for the case of a three-phase fault. Also
when the circuit breaker pole corresponding to the faulty line is opened, the
other two lines (healthy ones) remain intact so that considerable power transfer
continues to take place via these lines in comparison to the case of three-pole
switching when the power transfer on fault clearing will be reduced to zero. It
is, therefore, easy to see why the single pole switching and reclosing aids in
stability problem and is widely adopted. These facts are illustrated by means of
Example 12.12. Even when the stability margins are sufficient, single pole
switching is adopted to prevent large swings and consequent voltage dips.
Single pole switching and reclosing is, of course, expensive in terms of relaying
and introduces the associated problems of overvoltages caused by single pole
opening owing to line capacitances. Methods are available to nullify these
capacitive coupling effects,

Recent Trends

Recent trends in design of large alternators tend towards lower short circuit
ratio (SCR = 1/X,), which is achieved by reducing machine air gap with
consequent savings in machine mmf, size, weight and cost. Reduction in the

size of rotor reduces inertia constant, lowering thereby the stability margin. The
loss in stability margin is made up by such features as lower reactance lines,
faster circuit breakers and faster excitation systems as discussed already, and
a faster system valving to be discussed later in this article.

A stage has now been reached in technology whereby the methods of

improving stability, discussed above, have been pushed to their limits, e.g.,
clearing times of circuit breakers have been brought down to virtually
irreducible values of the order of two cycles. With the trend to reduce machine
inertias there is a constant need to determine availability, feasibility and
applicability of new methods for maintaining and/or improving system stability.
A brief account of some of the recent methods of maintaining stability is given
below:

HVDC Links

Increased use of HVDC links employing thyristors would alleviate stability
problems. A dc link is asynchronous, i.e., the two ac system at either end do
not have to be controlled in phase or even be at exactly the same frequency as
they do for an ac link, and the power transmitted can be readily controlled.
There is no risk of a fault in one system causing loss of stability in the other

system.
Breaking Resistors

N

For improving stability where clearing is delayed or a large load is suddenly
lost, a resistive load called a breaking resistor is connected at or near the
generator bus. This load compensates for at least some of the reduction of load
on the generators and so reduces the acceleration. During a fault, the resistors
are applied to the terminals of the generators through circuit breakers by means
of an elaborate control scheme. The control scheme determines the amount of
resistance to be applied and its duration. The breaking resistors remain on for
a matter of cycles both during fault clearing and after system voltage is
restored.

Short Circuit Current Limiters

These are generally used to limit the short circuit duty of distribution lines.
These may also be used in long transmission lines to modify favourably the
transfer impedance during fault conditions so that the voltage profile of the
system is somewhat improved, thereby raising the system load level during the
fault.

Turbine Fast Valving or Bypass Valving

The two methods just discussed above are an attempt at replacing the system
load so as to increase the electrical output of the generator during fault
conditions. Another recent method of improving the stability of a unit is to
decrease the mechanical input power to the turbine. This can be accomplished
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by means of fast valving, where the difference between mechanical input and
reduced electrical output of a generator under a fault, as sense by a control
scheme, initiates the closing of a turbine valve to reduce the power input.
Briefly, during a fast valving operation, the interceptor valves are rapidly shut
(in 0.1 to 0.2 sec) and immediately reopened. This procedure increases the
critical switching time long enough so that in most cases, the unit will remain
stable for faults with stuck-breaker clearing times. The scheme has been put to
use in some stations in the USA.

Full Load Rejection Technique

Fast valving combined with high-speed clearing time will suffice to maintain
stability in most of the cases. However, there are still situations where stability
is difficult to maintain. In such cases, the normal procedure is to automatlcally
trip the unit off the line. This, however, causes several hours of delay before
the unit can be put back into operation. The loss of a major unit for this length
of time can seriously jeopardize the remaining system.

To remedy these situations, a full load rejection scheme could be utilized
after the unit is separated from the system. To do this, the unit has to be
equipped with a large steam bypass system. After the system has recovered
from the shock caused by the fault, the unit could be resynchronized and
reloaded. The main disadvantage of this method is the extra cost of a large
bypass system.

Example 12.12

The system shown in Fig. 12.44 is loaded to 1 pu. Calculate the swing curve
and ascertain system stability for:

(i) LG fault three pole switching followed by reclosure, line found healthy.

(i) LG fault single pole switching followed by reclosure, line found healthy.
Switching occurs at 3.75 cycles (0.075 sec) and reclosure occurs at 16.25
cycles (0.325 sec). All values shown in the figure are in pu. -

|Ef=1-2

x 0-1 Xp=01
H=4-167 P X1 =X, = 03, X = 1:0 RIS
X,= 015 V=120
o1 A\’L] / LG fault JY/—\‘ H=oo

Fig. 12.44

Solution  The sequence networks of the system are drawn and suitably reduced
in Figs. 12.45a, b and c.

[ ] ‘ |
( )IEI=12 ‘ !
T vi=10( ) = C' |E|=1-2 vi=10( )
=03 i L T
2 0-1 03 0-1 04 0-4 r
L e By 01 p e
(a) Positive sequence network
015 = E;jx2=0‘154
01 p 03 0-1 I
NS 1 [ Y gy U i SUN P
(b) Negative sequence network
304 ‘;304 01 5 §xo=o~0915
I N !
———— ﬂ—/KG 6 p— *—— P

(c) Zero sequence network
Fig. 12.45

For an LG fault at P the sequence networks will be connected in series as
shown in Fig. 12.46. A star-delta transformation reduces Fig. 12.38 to that of
Fig. 12.47 from which we have the transfer reactance -

Xo(LG faul) = 0.4 + 0.4 + 04X04 ) g
0.246
I |
~50:0915]| l
IEF12 () ’ 1=0246 (" )|VE10
" o154 | ‘
O
04 P 0-4

Fig. 12.46 Connection of sequence networks for an LG fault
| L L]
( ) ) = ()
< 8 3!

N
LR
Fig. 12.47 Transfer impedance for an LG fault

When the circuit breaker poles corresponding to the faulted line are opened
(it corresponds to a single-line open fault) the connection of sequence networks
is shown in Fig. 12.48. From the reduced network of Fig. 12.49 the tiausfer
reactance with faulted line switched off is
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X, (faulted line open) = 0.4 + 0.42 + 0.4 = 1.22

Under healthy conditions transfer reactance is easily obtained from the
positive sequence network of Fig. 12.45 a as

X,,(line healthy) = 0.8

= 1

Positive sequence

[El=12( ) )|V|—10
o T
’YRW\—T EZWYL
g mﬁﬁ;,/// \ BN

025 P ! 0-4 01 P P4y

s

Negative sequence Zero sequence

Flg. 12.48 Connection of sequence networks with faulted line switched off

I\

El= 12k
[

Fig. 12.49 Reduced network of Fig. 12.48 giving transfer reactance

JIvi=10
04 p P’ 04
T —e— T e
_0_65.><12—-042

Power angle equations

Prefault

lEIIVI 12x1

12

sin §= sin §=1.5sin 6

P(»l=

Initial load = 1.0 pu
Initial torque angle is given by
1=1.5sin §,
or b, = 41.8°

During fault

= 22Xl G 620827 sin 6
145

During single pole switching

1.2x1

elll = E in &= 0985 sin &

Power System Stability Ls%
|
During three pole switching
Py =0
Postfault
Py=P,=15sin §
Now
(At)
A8, = A8, | + ~——P, a(n-1)
H = 4.167 MI/MVA
o O =4.63 x 107 sec¥/electrical degree
180x 50
Taking Az = 0.05 sec
2 2
(At) _ _ (0.05) =54
M 4.63x10
Time when single/three pole switching occurs
= 0.075 sec (during middle of Af)
Time when reclosing occurs = 0.325 (during middle of A7)
Table 12.9 Swing curve calculation—three pole switching
! Pl sind P, P, 5.4P, A8 é
sec (pu) (pw) (pu)  elec deg elec deg elec deg
0 1.5 0667 1.0 0.0 41.8
0, 0.827  0.667 0.552 0.448 41.8
Onyg 0.224 1.2 1.2 41.8
0.05 0.827 0.682 0.564 0.436 2.4 3.6 43.0
0.075—
0.10 0.0 0.726 0.0 1.0 54 9.0 46.6
0.15 0.0 0.0 1.0 54 14.4 55.6
0.20 0.0 0.0 1.0 54 19.8 70.0
0.25 0.0 0.0 1.0 54 25.2 89.8
0.30 0.0 0.0 1.0 5.4 30.6 115.0
0.325—
0.35 1.5 0.565 0.85 0.15 0.8 314 145.6

0.40 1.5 0.052  0.078 0.922 5.0 36.4 177.0
045 1.5 -055 -0827 1827 9.9 46.3 2134
0.50 L5 -0984 —1.48 248 13.4 59.7 259.7
0.55 1.5 -0.651 - 0.98 1.98 10.7 70.4 3194
0.60 1.5 0.497 0746  0.254 1.4 71.8 389.8
0.65 461.6.

The swing curve is plotted in Fig. 12.50 from which it is obvious that the
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.LsoS;

o) /

350

| 3 pole reclosure
300

(fault cleared)
N

T 250 - 3 pole
’ switch off |
SN
8 200 - ¥ ; /
IS | :
o) ! !
kel L
Ei i I
£ 150 3 MACHINE UNSTABLE
$
= %

100

|
oo bopode lmcinepmy |

0o 05

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

1.5
1.5
L5
1.5
1.5
1.5
1.5
1.5
L5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
L.5
L.5
1.5
1.5
1.5
L5
1.5

0.998
1.0
1.0
0.9985
0.989
0.96
0.894
0.781
0.62
0.433
0.259
0.133
0.079
0.107
0.214
0.38
0.566
0.738
0.867
0.946
0.983
0.997

1.5
1.5
1.5
1.5
1.485
1.44
1.34
1.17
0.932
0.65
0.39
0.2
0.119
0.161
0.322
0.57
0.84
L.11
1.3
1.42
1.48
1.5

- 05

- 05

- 05
-05
— (.485
- 0.44
-0.34
- 0.17
0.068
0.35
0.61
0.8
0.881
0.839
0.678
0.43
0.16
-0.11
-0.3
- 042
- 048
- 0.5

- 2.7
- 2.7
- 2.7
2.7
- 2.6
-24
- 1.8
- 0.9

0.4

1.9
33
4.3
4.8
4.5
3.7
23
0.9
- 0.6
- 1.6
-23
- 2.6
- 2.7

2.8
0.1
~26
53
-9
- 103
~ 121
- 13.0
~ 126
- 107
~74
- 3.1
1.7
6.2
9.9
12.2
13.1
12.5
10.9
8.6
6.0

33

86.6
894
89.5
86.9
81.6
73.7
63.4
51.3
38.3
25.7
15.0

7.6

4.5

6.2
12.4
223
34.5
47.6
60.1
71.0
79.6
85.6
88.9

The swing curve is plotted in Fig. 12.51 from which it follows that the system

- 1-0 is stable.
ime (sec) ——
Fig. 12.50 Swing curve for three pole switching with reclosure 100/ . S';gle pole switch off
v : Reclosure (fault cleared)
! e
Table 12.10 Swing curve calculation—single pole switching i M TN P
_ [ o 7N %
/ Pow  Sn 0 P, P, sa4p, Y + || / X /

sec (pu) (pu) (pu) _ elec deg  elec deg elec deg g‘l,, | / \ MACHINE STABLE / :

0 15 0667 1.0 0.0 41.80 e [/ A '

0, 0827 0.667 0552 0448 41.8 2 | / \ /

Oung 0224 12 12 418 g L.k i \

0.05 0.827 0.682 0564 0436 2.4 3.6 43.0 s ¥ | |
0.075— | \

0.10 0985 0.726 0.715 0.285 1.5 5.1 46.6 :

0.15 0985 0.784 0.77 0.230 1.2 6.3 51.7 20—+ \ '

0.20 0985 0.848 0.834 0.1e6 0.9 7.2 58.0 \ i

0.25 0985 0.908 0.893 0.107 0.6 7.8 65.2 o S A o e = |

0.30 0985 0.956 0.940 0.060 0.3 8.1 73.0 0-5 1-0 15
0.325— Time (sec) ——»

035 15 0988 1.485 -0485 —26 5.5 81.1 Fig. 12,51 Swing curve for single pole switching with reclosure

(Contd....)
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12.1

12.2

12.3

12.4

12.5

12.6

12.7

PROBLEMS

A two-pole, 50 Hz, 11 kV turboalternator has a rating of 100 MW,
power factor 0.85 lagging. The rotor has a moment of inertia of a 10,000
kg-m?. Calculate H and M.

Two turboalternators with ratings given below are interconnected via a
short transmission line.

Machine 1: 4 pole, 50 Hz, 60 MW, power factor 0.80 lagging,
moment of inertia 30,000 kg-m?
Machine 2: 2 pole, 50 Hz, 80 MW, power factor 0.85 lagging,

moment of inertia 10,000 kg-m?>

Calculate the inertia constant of the single equivalent machine on a base
of 200 MVA.
Power station 1 has four identical generator sets each rated 80 MVA and
each having an inertia constant 7 MJ/MVA; while power station 2 has
three sets each rated 200 MVA, 3 MJ/MVA. The stations are locatéd
close together to be regarded as a single equivalent machine for stability
studies. Calculate the inertia constant of the equivalent machine on 100
MVA base.
A 50 Hz transmission line 500 km long with constants given below ties
up two large power areas

R =011 Q/km L = 1.45 mH/km

C =0.009 pF/km G =0
Find the steady state stability limit if IVl = IV,] = 200 kV (constant).
What will the steady state stability limit be if line capacitance is also
neglected? What will the steady state stability limit be if line resistance
is also neglected? Comment on the results.
A power deficient area receives 50 MW over a tie line from another
area. The maximum steady state capacity of the tie line is 100 MW. Find
the allowable sudden load that can be switched on without loss of
stability.
A synchronous motor is drawing 30% of the maximum steady state
power from an infinite bus bar. If the load on motor is suddenly
increased by 100 per cent, would the synchronism be lost? If not, what
is the maximum excursion of torque angle about the new steady state
rotor position.
The transfer reactances between a generator and an infinite bus bar
operating at 200 kV under various conditions on the interconnector are:

Prefault 150 2 per phase
During fault 400 {2 per phase
Postfault 200 {2 per phase

12.8

12.9

12.10

12.11

12.12

i
If the fault is cleared when the rotor has advanced 60 degrees electrical
from its prefault position, determine the maximum load that could be
transferred without loss of stability.
A synchronous generator is feeding 250 MW to a large 50 Hz network
over a double circuit transmission line. The maximum steady state power
that can be transmitted over the line with both circuits in operation is
500 MW and is 350 MW with any one of the circuits.
A solid three-phase fault occurring at the network-end of one of the lines
causes it to trip. Estimate the critical clearing angle in which the circuit
breakers must trip so that synchronism is not lost.
What further information is needed to estimate the critical clearing time?
A synchronous generator represented by a voltage source of 1.05 pu in
series with a transient reactance of j0.15 pu and in inertia constant H =
4.0 sec, is connected to an infinite inertia system through a transmission
line. The line has a series reactance of j0.30 pu, while the infinite inertia
system is represented by a voltage source of 1.0 pu in series with a
transient reactance of j0.20 pu.

The generator is transmitting an active power of 1.0 pu when a three-
phase fault occurs at its terminals. If the fault is cleared in 100 millisec,
determine if the system will remain stable by calculating the swing
curve.

For Problem 12.9 find the critical clearing time from the swin\g curve for
a sustained fault.
A synchronous generator represented by a voltage of 1.15 pu in series
with a transient reactance is connected to a large power system with
voltage 1.0 pu through a power network. The equivalent transient
transfer reactance X between voltage sources is j0.50 pu.
After the occurrence of a three-phase to ground fault on one of the lines
of the power network, two of the line circuit breakers A and B operate
sequentially as follows with corresponding transient transfer reactance
given therein.

(1) Short circuit occurs at § = 30°, A opens instantaneously to make X

= 3.0 pu.

(ii) At 6=60° A recloses, X = 6.0 pu.
(iii) At §=75° A reopens.
(iv) At &= 90° B also opens to clear the fault making X = 0.60 pu
Check if the system will operate stably.
A 50 Hz synchronous generator with inertia constant H = 2.5 sec and
a transient reactance of 0.20 pu feeds 0.80 pu active power into an
infinite bus (voltage 1 pu) at 0.8 lagging power factor via a network with
an equivalent reactance of 0.25 pu.

A three-phase fault is sustained for 150 millisec across generator
terminals. Determine through swing curve calculation the torque angle &,
250 millisec, after fault initiation.
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12.13 A 50 Hz, 500 MVA, 400 kV generator (with transformer) is connected

to a 400 kV infinite bus bar through an interconnector. The generator
has H = 2.5 MJ/MVA, voltage behind transient reactance of 450 kV and
is loaded 460 MW. The transfer reactances between generator and bus
bar under various conditions are:

Prefault 0.5 pu
During fault 1.0 pu
Postfault 0.75 pu

Calculate the swing curve using intervals of 0.05 sec and assuming that
the fault is cleared at 0.15 sec.

12.14 Plot swing curves and check system stability for the fault shown on the

system of Example 12.10 for fault clearing by simultaneous opening of
breakers at the ends of the faulted line at three cycles and eight cycles
after the fault occurs. Also plot the swing curve over a period of 0.6 sec
if the fault is sustained. For the generator assume H = 3.5 pu, G=1 pu
and carry out the computations in per unit.

12.15 Solve Example 12.10 for a LLG fault.
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