
12.1 INTRODUCTION 

The stability of an interconnected power system is its ability to return to normal 
or stable operation after having been subjected to some form of disturbance. 
Conversely, instability means a condition denoting loss of synchronism or 
falling out of step. Stability considerations have been recognized as an essential 
part of power system planning for a long time. With interconnected systems 
continually growing in size and extending over vast geographical regions, it is 
becoming increasingly more difficult to maintain synchronism between various 
parts of a power system. 

The dynamics of a power system are characterised by its basic features given 
below: 

1. Synchronous tie exhibits the typical behaviour that as power transfer is
gradually increased a maximum limit is reached beyond which the system 
cannot stay in synchronism, i.e., it falls out of step. 

2. The system is basically a spring-inertia oscillatory system with inertia on
the mechanical side and spring action provided by the synchronous tie wherein 
power transfer is proportional to sin 6 or 6 (for small 6; 6 being the relative 
internal angle of machines). 

3. Because of power transfer being proportional to sin 6, the equation
determining system dynamics is nonlinear for disturbances causing large 
variations in angle 6. Stability phenomenon peculiar to non-linear systems as 
distinguished from linear systems is therefore exhibited by power systems 
(stable up to a certain magnitude of disturbance and unstable for larger 
disturbances). 

Accordi11gly power system stability problems are classified into three basic 
types*-steady state, dynamic and transient. 

*There are no universally accepted precise definitions of this terminology. For a
definition of some important terms related to power system stability, refer to IEEE 
Standard Dictionary of Electrical and Electronic Terms, IEEE, New York, 1972. 
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Th"t study of steady state stability is basically concerned with the
determination of the upper limit of machine loadings beiore losing synchronism,
provided the loading is increased gradually.

Dynamic instability is more probable than steady state instability. Small
disturbances are esntinuaHy oeeurring irr a po*.. system r"#"ti"* i"
loadings, changes in turbine speeds, etc.) which are small enough not to cause
the system to lose synchronism but do excite the system into the"itate of natural
oscillations. The system is said to be dynamically stable if the oscillations do
not acquire more than certain amplitude and die out quickly (i.e., the system is
well-damped). In a dynamically unstable system, the oscillation amplitude is
large and these persist for a long time (i.e., the system is underda-p"a;. rni,
kind of instability behaviour constitutes a serious threat to system security and
creates very difficult operating conditions. Dynamic stability can be signifi-
cantly improved through the use of power system stabilizers. Dynamic system
study has to be carried out for 5-10 s and sometimes up to 30 s. computer
simulation is the only effective means of studying dynamic stability problems.
The same simulation programmes are, of course, appiicable to transient stability
studies.

Following a sudden disturbance on a power system rotor speeds, rotor
angular differences and power transfer undergo fast changes whose magnitudes
are dependent upon the severity of disturbance. For a large disturbanc", 

"hung..in angular differences may be so large as to .:ause the machines to fall out of
step' This type of instability is known as transient instability and is a fast
phenomenon usually occurring within I s fbr a generator close to the cause of
disturbance. There is a large range of disturbancei which may occur on a power
system, but a fault on a heavily loaclecl l ine which requires opening thc l ipc t<l
clear the fault is usually of greatest concern. The tripping of a loadJd generator
or the abrupt dropping of a large load may also cause instability.

The effect of short circuits (faults), the most severe type of disturbance to
which a power system is subjected, must be determined in nearly all stability
studies' During a fault, electrical power from nearby generators is reduced
drastically, while power from remote generators is scarcely af1'ecte4. ln some
cases' the system may be stable even with a sustained fault, whereas other
systems will be stable only if the fault is cleared with sufficient rapidity.
Whether the system is stable on occurrence of a fault depends not only on the
system itself, but also on the type of fault, location of fauit, rapidity of clearing
and method of clearing, i.e., whether cleared by the sequential opening of two
or more breakers or by simultaneous opening and whether or not the faulted line
is reclosed. The transient stability limit is atmost always lower than the steady
state limit, but unlike the latter, it may exhibit different values depending on the
nature, location and magnitude of disturbance.

Modern power systems have many interconnected generating stations, each
with several generators and many loads. The machineJlocated a-t any one point
ln a system normally act in unison. It is, therefore, common practice in stability
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machines which are not separated by lines of high reactance are lumped
together and considered as one equivalent machine. Thus a multimachine
system can often be reduced to aq equlyalg4t fery lq4qhrue system- If
Synchronlsm ii lost, ttre rn'achinei of eaitr gioup stay together although they go
out of step with other groups. Qualitative behaviour of machines in an actual
system is usually that of a two machine system. Because of its simplicity, the
two machine system is extremely useful in describing the general concepts of
power system stability and the influence of various t'actors on stability. It will
be seen in this chapter tbata two machine system can be regarded as a single
machine system connected.to infinite system.

Stability study of a multimachine system must necessarily be carried out on
a digital computer.

I2.2 DYNAMICS OF A SYNCHRONOUS MACHINE

The kinetic energy of the rotor at synchronous machine is

JJ,^ x 10-6 MJ

where

But

whorc

We shall

-/ = rotor moment of inertia in kg-m2

aro, = synchronous speed in rad (mech)/s

u.r,n = rotor speed in rad (elect)/s

P = nuurbel o1'rnaclrine poles

= moment of inertia in MJ-s/elect rad

detine the inertia constant H such that

K E = 1
2

M = J ( ? \ ' u , x 1 0 - 6
\ P /  ' ,

G H = K E =  ! u % M J2

KE = +(t(?)'c.,. xro-.)*

- L  M ,
2 ' ,

G = machine rating (base) in MVA (3-phase)

H = inertict constant in MJ/I4VA or MW-s/MVA
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It immediately follows that

M = 2GH = GH 
MJ-s/elect rad

(ts lt f

= ffi 
14J-s/elect degree

180-f

M is also called the inertia constant.
Taking G as base, the inertia constant in pu is

M (pu) = + s2lelect rad
nf

(r2.r)

(r2.2)

H  ) , ,= 
ffi 

s'lelect degree

The inertia constant H has a characteristic value or a range of values for
each class of machines. Table 12.1 lists some typical inertia constants.

, Table 12.1 Typical inertia constants of synchronous machines*

Type oJ Mat:hine Intertia Con.slunt H

Stored Energy in MW Sec per MVA**

Turbine Generator
Condensing

Non-Condensing
Water wheel Gencrzttor

Slow-speed (< 200 rpm)
High-speed (> 200 rpm)

Synchlor rous Corrdcr rscr '+  +  4

Large
Sma l l

Synclrrcnous Motor with load varying l i 'ortr
1.0 to 5.0 and highcr lor hcavy l ' lywhccls

It is observed from Table 12.1 th'at the value of H is considerably higher for
steam turbogenerator thzrn tbr watc:r wheel generator. Thirty to sixty per cent of
the total inertia of a steam turbogenerator unit is that of the priine mover,
whereas only 4 -I5Vo of the inertia of a hydroelectric generating unit is that of
the waterwheel, including water.

1,800 rpm
3,000 rpm
3,000 rpni

9-6
7-4
4-3

L - J

2-4

t . 2 5
l .00

2.00

* Rcprinted with permission of the Westinghous Electric Corporation
Electrical Transmission and Distribution Reference Book.

+* Where range is given, the first figure applies to the smaller MVA sizes.
*tc+ Hydrogen-Cooled,25 per cent less.
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e Swing Equation

;ure 12.1 shows the torque, speed and flow of mechanical and electrical

wers in a synchronous machine. It is assumed that the windage, triction and

n-loss torque is negligible. The differential equation governing the rotor

namics can then be written as

-  d 'o^
J - : ; t  =T^- r"  Nt

ot-
'here

0*
T*

T,

= angle in rad (mech)
= turbine torque in Nm; it acquires

machine
= electromagnetic torque developed

for a motoring machine

o _ >t m

mechanical pt lwer inPut

electrical power outPttt

( r2 .3 )

a negative value for a motoring

in Nm; it acquires negative value

Fig. 12.1 Flow of mechanical and electrical powers in a synchronous machine

While the rotor undergoes dynamics as per Eq. (12'3), the rotor' speed

changes by insignificant magnitude for the time period of interest (1s) [Sec.

0.i. Equation (12.3) can therefore be converted into its more convenient
.  -  L - .  . , . . - , = * : * *  r ! : a  * n r ^ r  ( ' n e r r . l  t n  r c n r a i n  c n n s t : t n t  a t  t h g  S V n C h f O n O U Sl n r l t a r  T n r m  n v  2 \ \ l l l l l l l l y  l l l c  l t r l t r l  J U U U U  L v  l v l l r q r t l  ! v r r u r q r r r

, v v r v r  t v r r l t  v J  -  
I

peed (ur,.). Multiplying both sides of Eq. ( 12.3) by u),,^' we can write

J6"n, 
t ' :t);" 

x lo-(' - P^ P,. Mw
d t t

where

MW
MW; stator copPer

( t 2 . 4 )

loss is assumed
l n

t n

p
' t t t  -

D
t - , -

negligible.

Rewriting Eq. (12.4)

/  ) \ 2  s 2 a

ul;) u.r, x 1o-6) 
ff 

- P^ P, Mw

where 0, = angle in rad (elect)

n o d ' \ ,  = ,  - p  ( 1 2 . 5 )ol Mi;- = P,,- P"
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It is more convenient to measure the angular position of the rotor with respect
to a synchronously rotating frame of reference. Let

o = 
(a;,?;[' ;"':?: f# 

u l ar di s P 1 ac e me n t fro m s y n c hron o u s l y

(r2.6)

(r2.7)

(called torque angle/power angle)
From Eq. (12.6)

drg,  _ d26
,Jt2 dt2

Hence Eq. (12.5) can be written in terms of d as

, ,  d 2 6  '
M - : = P ^ - P e M w

ot-

With M as defined in Eq. (12.1), we can write

GH d2d

f V - P * - P " M w
Dividing throughoutby G, the MVA rating of the machine,

a

M(pu) + = P*- P,;
dt'

in pu of machine rating as base

where

(12.8)

(r2.9)

(12.r0)

M(Pu) = +
lrj

H  d z bor  ^  -  =  P* -  P ,  pu  ( IZ .1 I )
n f  d t "

This equation (Eq. (12.1D)l}q.(12.1 1)), is called the stving ecluatioy and it
describes the rotor dynamics fbr a synchronous machine (generating/motoring).
It is a second-order differential equation where the darnping term (proportional
to d6ldt) is absent because of the assumption of a lossless machine ancl the fact
that the torque of damper winding has been ignored. This assumption leads to
pessimistic results in transient stability analysis-dampinghelps to stabilize the
system. Damping must of course be considered in a dynamic stability study.
Since the electrical power P, depends upon the sine of angle d(see Eq. (12.29)),
the swing equation is a non-linear second-order differential equation.

Multimachine System

In a multimachine system a common system base must be chosen.
Let

_ Power System Stabitity _ I +Sl
-

Grnu"h = machine rating (base)

Gryrt",o = system base

Equation (12.11) can then be written as

+-" (Yry*l = (p- - p.) g'""
Gsystem \- / dt' ) 

\ 
"t c' 

Grrr,.*

= machine inertia constant in system base

Machines Swinging Coherently

Consider the swing equations of two machines or a common system base.

or  { " " " '  o ' !  = '  -P

"f 
dl 

= P*- P"PU in sYstem base

where Hryr,"* = H-u"h t'+*l**" 
\.. Gt""'n /

Hr d261

"f 
a; 

= P*r - P"t Pu

H2 d262

" f  
A;  

= P*2- P"zPu

Since the machine rotors swing together (coherently or in unison)

6 ,  =  [ r =  [

Adding Eqs (12.14) and (12.15)

H"q d26

trf dtz 
= P*- P"

whcrc
P r r = P * r +  P n

P r = P " l  *  P r z

H " q = H r +  H ,

ffimel"L2rl
1

( t : . r2)

(r2.r3)

( r2 .14)

.  (12. rs )

( r2 .16"

( r2 . r7 )

The two machines swinging coherently are thus reduced to a single machine as
in Eq. (12.16). The equivalent inertia in Eq. (12.17) can be wrirten as

H"q, = Hl ,nu.h Gl ^ach/Grystem * Hz ^u"h G2 -u"h/G.yr,.. (12.18)

The above results are easily extendable to any number of machines swinging
coherently.

A 50 Hz, four pole turbogenerator rated 100 MVA, 11 kv has an inertia
g6nsf  an f  n f  R  O MI / I \ / IVA



Find the stored energy in the rotor at synchronous speed.
If the mechanical input is suclcJenly raised to 80 MW fbr an electrical load
of 50 MW, tind rotor acceleration, neglecting rrlechanical and electrical
losses.

(c) If the acceleration calculated in part (b) is maintained for 10 cycles, find
the change in torque angle and rotor speed in revolutions per minute at the
end of this period.

)olution
(a) Stored energy = GH = 100 x g = g00 MJ

( b )  P , = 8 0 - 5 0 = 3 0 M W = M  4
dt'

r, CH 800
. 1  - -

180/  180 x  50

4  d 2 6
+'j 6,2 

= 3o

or

r )  c

(c) 10 cycres = 
"lT 

- 337 '5 elect deg/s2

Change in d= !{ZZI.S) x (0.2)2 = 6.75 elect degrees

=  6 0  x  
3 3 7 ' 5  . o  1 ^ E  !

2x360J 
= z6'12r {PnVs

. ' . Rotor speed at the end of l0 cvcles

-  r2ox5o + 'z8. tz5 x  0 .2
4

= 1505.625 rpm

I2.3 POWER ANGLE EQUATION

In solving the s'uving equation (Eq (12.10)),certain simplifying assumpticns are
usually made. These are:

1. Mechanical power input to the machine (P*) remains constant during the
period of electromechanical transient of interest. In other words, it means that
the effect of the turbine governing loop is ignored being much slower than the
speed of the transient. This assumption leads to pessimistic result-governing
loop helps to stabil ize the sysrem.

'2. Rotor speed changes are insignificant-these have already been ignored
in formulating the swing equation.

(a)

(b)

t4/s' 
I torJern Power Srrctarn Anarrraio--

4 
MJ-r/elect deg

teryer-Svele m-qtsqllv--

3. Effect of voltage regulating loop during the transient is ignored, as a

consequence the generated machine emf remains constant. This assumption also

leads to pessimistic results-voltage regulator helps to stabil ize the system.

Before the swing equation can be solved, it is necessary to determine the

dependence of the electrical powel otttput (P,,) upon the rotor angle.

Simplified Machine Model

For a nonsalient pole machine, the per phase induced emf-terminal voltage

equation under steady conditions is

where

E =V + jXolu+ jXol,,; X,r) X,r

I = I a +  I s

( r2 . Ie )
(r2.20)

(12.2r)

' (12.22)

and usual symbols are used.
Under transient condition

X a  - X ' a 1 X a

but

X'o = Xn since the main fleld is on the d-axis

Xtd < Xo ; but the difference is less than in Eq' (I2.I9)

Equation (12.19) during the transient modifies to

Et =V + jxt lo+ jXnln

=V + jXq(I - I) + jXotlo

= (Y + jxp + j(X'a - Xq)Id

The phasor diagram colresponding to Eql (12.21) and (12.22) is drawn in

Fig. 12.2.
Since under transient condition, X'a 1X, but Xn remains almost unaffected,

it is fairly valid to assttme that

x'a = xq (r2.23)

Fig. 12.2 Phasor diagram-sal ient pole machine
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equation (12.22)now becomes

E , = V + j X n I

= V + jXotl (r2.24)
The machine mod
also applies to a cylindrical rotor machine where

- - -  -  - D '

X,l = X*/(transient
synchronous reactance)

The simplified machine of Fig. 12.3 will be used in all stabilitv studies.

P.ower Angle'Cunre

For the purposes of stability studies lEl1, transient emf of generator motor,remains constant or is the independent variable determined by the voltageregulating loop but v, the generator determined terminal voltage is a dependent
variable' Therefore, the nodes (buses) of the stability study network pertain tothe ernf terminal in the machine model as shown in rig. 12.4, while the machinereactance (Xu) is absorbed in the system network as clifferent from a load flowsttlcly' Fttrther, lhe loirt ls (othcr thrrn l iu'gc s;ynchronous ri it i tt ir.s) wil l bc r.cpiacetlby equivalent static admittances (connected in shunt between transmission
network buses and the reference bus). This is so because load voltages varycltlr ing a stabil ity stutly (in a loacl l low stucly, the.se remain constant within analrow bancl).

,/

System network

Fig. 12.3 Simpli f ied machine model

Fig. 12.5 Two-bus stability study network

For the 2-bus system of Fig. 12.5

f  Y , ,  Y "1
Ynus = I  - j '  - : '  l ;  Y ,z= Yzr

LY^ Yr,[ I

Complex power into bus is given by

P i +  j Q i - E l f

At bus I

Pr + jQr - Er' (YyE1)* + E, (YpEil*

But

(r2.2s)

(r2.26)

E ' t  = l E i l  l 6 ;  E /  =  l E ' z l  1 4 .

Y,u = Gr t  + jBt i  Yrz = lYrzl  l0 p

Since in solution of the swing equation only real power is involved, we have
from Eq. (12.26)

I r t  = l E l i 2  G t r +  l E r t  I  i E i i  i y , r l  c o s  ( , t i  -  , h  -  0 , 2 )  u 2 . 2 7 )
A similar equation will hold at bus 2.

Let

l E l l z G ,  =  P ,

lEt ' l  lEzt  I  lY7l  = Pn,*

4 -  6 = 6
and Qn = x/2 -1

Then Eq. (12.27) can be written as

Pr = P, * P,n"* sin (6 - 1); Power Angle Equation (IZ.ZB)

For a purely reactive network

Gtt = 0 (. ' . P. = 0); lossless network

} t z = n 1 2 ,  : .  J  =  0

P , = P ^ * s i n  6

Power Svstem Stabilitv [ECAC,+'
T*

\ t 2

o @

O f r

Fig. 12.4

(12.29a)
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I

where P^^, = lE'' I lE'' | '' - x '

simplified power angle equation

Yl  aZ t

+= - P^ Pn'u* sin dpu
7rI dt-

where X = transfer reactance between nodes (i.e., between E{
'Ihe graphical plot of power angle equation (Eq.(12.29)) is

Fig. 12.6.

p " l
I

DI max

(Ps6+APe).-....t-----*

Peo

- Generator

Fig. 12.6 Power angle curve

The swing equation (Eq. (12.10)) can now be written as

j0.5

i0.5

lE' l t6
1 lo"

(b)

F|g .12 .7As imp|esys temwi th i t s reac tanced iagram

0.5
Xrz =0 '25 + 0 '1 + -

= 0.6

Consider now a more complicated case wherein a 3-phase fault occurs at the

midpoint of one of the lines in which case the reactance diagram becomes that

of Fig. 12.8 (a).

Star-Delta Conversion

Converting the star at the bus 3 to delta, the network transforms to that of

Fig. 12.8(b) wherein

(,

j0.25
at(- U

(r2.29b)

and Ei)

shown in

(12.30)

which, as already stated, is a non-linear second-order differential equation with
no damping.

T2.4 NODE ELIMINATION TECHNIOUE

In stability studies, it has been indicated that the buses to be considered are

those which are excited by the internal machine voltages (transient emf's) and

not the load buses which are excited by the terminal voltages of the generators.

Therefore, in Y"u, formulation for the stability study, the load buses must be

eliminated. Three methods are available for bus elimination. These are

illustrated by the simple system of Fig. 12.7(a) whose reactance diagram is

drawn in Fig. I2.7(b).In this simple situation, bus 3 gets easily eliminated by

parallel combination of the lines. Thus

o

(a)

lE/lt6
1ttr
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lE/lt6

CD

(c)

F ig .  12.8

v _ 0.25 x 0.35 + 0.35 x 0.5 + 0.5 x0.25

=  1 . 5 5

This method for a complex network, however, cannot be mechainzed for
preparing a computer programme.

Thevenin's Equivalent

With ref'crcncc lo Fig. l2.ti(a), tho Thcvcnirr's ccluivalcnt lbr thc network
portion to the left of terminals a b as drawn in Fig. 12.8(c) wherein bus t has
been modified to 1/.

l u tPower System Stability 
, 

- _

This method obviously is cumbersome to apply for a network of even small
complexity and cannot be computenzed.

Node Elimination Technique

Formulate the bus admittances for the 3-bus system of
network is redrawn in Fig. 12.9 wherein instead of
admittances are shown. For this network.

Fig. 12.8(a). This
reactance branch.

(r ra

(r2.31)

(r2.32)

of Eq. (12.31),

@ o

ruus

The bus 3 is to be eliminated.
In general for a 3-bus system

f ' 'I fr' Y" t"lIu'I
lh | = lY^ Y, vu llv, I
Llrl Lv,, Yn rrrJL%l

Since no source is connected at the bus 3
I t  = o

or  Yr rVr+  Yr rVr+  Yr rVr=O

o r  v z = - ? r r -  ? r ,Yrt Y.,

Substituting this value of V3 in the remaining two equations
thereby eliminating Vy

I t  =Y,Vt  *  YrzVz+ Yt tV t

=(",  -  Y,rYr,  )  u +( y,"  - !+)v"- ( . ^ t t  
Y r ,  

' [ ' t '  
Y r ,  ) ' '

, r 0.25
v r h  =  

0 2 5 + 0 - , 5  
l E t l  l 5

= 0.417 |  Et  I  16

0.35x0.25
xrh  =  

035+025 
-  o '146

Xt2  =0 .146 +  0 .5  =  0 .646*

*This value is different from that obtained by star delta transformation as
longer lEtl  I  {  in fact i t  is 0.417 lEtl  16.

Itlow

Fig.  12.9

V* is no



In compact form

Ynus (reduced) =lt,i, ' l, l, '1
lY'r, Y'r, )

Y ' t l = Y " - r y
'33

Y'12 = Y'21= Ytz -

v t , = y r r - Y r t Y tt 22 - 'zz 
yT

In general, in eliminating node n

Yo^(old)Y,,(old)
Yo, (new) = Yry (old)

Applying Eq. ( 12.34) to the example in hand

l-t.gzt
Ysu5 (reduced) = ; 1 0.646L

It then follows that

X , t = : -  = 1 . 5 4 8 (  =  1 . 5 5 )
o.646

In the systenr shown in Fig. 12,10, a three-phase static capacitive reactor of
reactance 1 pu per phase is connected through a switch at motor bus bar.
Calculate the limit of steady state power with and without reactor switch closed.
Recalculate the power limit with capacitive reactor replaced by an inductive
reactor of the same value.

to be 1.0 pu.

Solution

l E r l l E ^ l  I . Z x I=f f i=m=o '49Pu

(2) Equivalent circuit with capacitive reactor is shown in Fig. 12.71 (a).

j1.o jo.l i0.25 io.1 i1.o p'e65

lEnl = 1.2 -i1.0 
= lEml = 1.0

(a) (b)

Flg .  12 .11

Converting star to delta, the network of Fig. 12.11(a) is reduced to that of

Fig. 12.11(b) where

7X( t rans fer ) - /1 .35X/1 .1+/1 .1X(_J1.0)+( - /1 .0 )XJ1.35 . .-j1.0

= j0.965

.  1 .2x1
Steady state power limit = 

ffi 
= 1-244 pu

(3) With capacitive reactance replaced by inductive reactance, we get

equivalent circuit of Fig. 12.12. Converting ster to delta, we have

trasfer reactance of

i1.35 i1.1

Fig.12.12

_ j1.35 x.r1.l + "11.1x ll.0 + 11.0 x.t1.35

i 1.0

- j3.e35

YrtYt,

Ytt

(12.33)

Q23aa)

(r2.34b)

(r2.34c)

(r2.3s)

the

the

Fig .  12 .10

7X(transfer)
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t"-t,

Steady state power timit - ' : ' ! ] = 0.304 pu
3.935

Example 12.3

The generator of Fig. 12.7(a) is delivering 1.0 pu power to the infinite bus (lVl
= 1'0 pu), with the generator terminal voltage of v,r = 1.0 pu. calculate the
generator emf behind transient reactance. Find the maximu- io*". that can be
transferred under the following conditions:

(a) System healthy
(b) One line shorted (3_phase) in rhe middle
(c) One line open.

. Plot all the three power angle curves.

Solution

L,et Vt = lV,l la = | la
From power angle equation

t v t  l l v  I_ - - -  s tn  o=p"
X

(  t " t  )

[ 0 2 5 + o J J s r n  
< t  =  I

or  r r  = 20.5"

Current into infinite bus.

Power System Stability hiffi

As already calculated in this section,

Xn = l '55

= !".!;!! = 0.6e4 pu

or P, = 0.694 sin d (ii)

(c) One line open:

It easily follows from Fig. 12.7(b) that

X r z  = 0 . 2 5  +  0 . 1  +  0 . 5  =  0 . 8 5

P* . *= t i t ^o ] t  = r .265
0.85

or P" = I.265 sin 6 (iii)

The plot of the three power angle curves (Eqs. (i), (ii) and (iii)) is drawn in
Fig. 12.13. Under healthy condition, the system is operated with P,, = P, = 1.0
pu and 6o= 33.9", i.e., at the point P on the power angle curve 1.79 sin d As
one line is shorted in the middle, Po, remains fixed at 1.0 pu (governing system
act instantaneously) and is further assumed to remain fixed throughout the
transient (governing action is slow), while the operating point instantly shifts to

Q on thc curvc 0.694 sin dat d= 33.9". Noticc thut bccuusc of machine inertiu,
the rotor angle can not change suddenly.

1 . 7 9

1.265

Pn=1 'O

0.694

0

0.694 s in 6

33.90
I

900 A

Fig. 12.13 Power angle curue,s-

I2.5 SIMPLE SYSTEMS

Machine Connected to Infinite Bus

Figure 12.14 is the circuit model of a single machine connected to infinite bus
through a line of reacthnce Xr.In this simple case

l V , l l a - l V l l 0 "

jx

|  120 .5 -  I  l 0
i0.3s

= l + j 0 . 1 8 = 1 . 0 1 6  1 1 0 . 3 "
Voltage behind transient reactance,

E t  = t l t r  +  . j 0 . 6  x  ( l  +  7 0 . 1 g )
= 0.892 + j0.6 -  1.075 133.9"

(a) System healrhy

p^u* = lv )-l Et | - 1x 1.075 - ., F,.\ ,-,
x , ,  

-  
c ,5  

=  t ' t9  PU

P, = I '79 sin d

(b) One line shorred in the middle:

I _

(i)
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Xtransf.er =X'a* X,

From Eq. (12.29b)

,, ='4U sin d= p.u* sin d
Xt urrrf..

The dynamics of this sysrem are describecl in Eq. (12.11) as

-#ft= P^- P" Pu

P r l = - P r z =  P "

The swing equations for the two machines can now be written as

t L  _ _ r ( P ^ r _  P " r )  _  _ "  ( p . - + \
d t z  

- " ' i  
f f ,  ) : u t  t  r r ,  l

(r2.36)

lE/lt6

Fi1.12.14 Machine connected to infinite bus

Two Machine System

The case of two finite machines connected through a line (X") is illustrated in
Fig. 12.15 where one of the machines must be generating und th" other must
be motoring. Under steady condition, before the system goes into dynamics and

Fig. 12.15 Two-machine svstem

P * t = - P * z = P . (12.38a)
the mechanical input/output of the two machines is assumed to remain constant
at these values throughout the dynamics (governor action assumed slow).
During steady state or in dynamic condition, the electrical power output of the
generator must be absorbed by the motor (network being lossless). Thus at all
time

(12.38b)

(12.39a)

t -

Power System Stability I lt5'

d 2 6 "  . ( P - r - P " r \  ( r - - n - )
and it ="f 

l2?:)= "tlH')
Subtracting Eq. (12.39b) from Eq. (12.39a)

d2@,;6) =^r( ' : j r ! , ]  , . -  -  P,)
dtz 

.J 
\  HrH, )

H"q d26
o r  - *  . ,  = P n -  P ,

7r I (lt-

w h e r e  6 = 4 -  6 .

rr - HtH,
"eq Hl + Hz

The electrical power interchange is given by expression

p" = ,E!4!- ,in6' X'0, + x, + xd2

(r2.39b)

(r2.40)

(r2.4r)

(r2.42)

(r2.43)

(12.44)

The swing equation Eq. (12.41) and the power angle equation F;q- (12.aa)

have the same form as for a single machine connected to infinite bus. Thus a

two-machine system is equivalent to a single machine connected to infinite bus.

Because of this, the single-machine (connected to intinite bus) qYstem would be

studied extensively in this chapter.

In the system of Example 12.3, the generator has an inertia constant of 4 MJ/

MVA, write the swing equation upon occurrence of the fault. What is the initial

angular acceleration? If this acceleration can be assumed to remain constant for

Lt = 0.05s, find the rotor angle at the end of this time interval and the new

acceleration.

Solution

Swing equation upon occurrence of fault

H  d ' 6  _ o  D
1 g 0 f  d v  

-  r  m -  ' e

4 d,26 ,

* " t # = l - 0 ' 6 9 4  
s i n  6

t4 = z2so (1 - 0.6e4 sin d;.
d t "
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Initial rotor angle do = 33.9" (calculated in Example 12.3)

a 2  s l
; l  = 2250 ( l  -  0.694 sin 33.9")
d t '  l ,  -  n+

#l * = 0; rotor speed cannot change suddenly
C l l  l r :  o +

A, ( in A,t  = 0.05s) = x 1379 x (0.05)2

7"

+ 4,6 = 33.9 + 1.7" = 35.6"

I
2

t .

66 t =

a26 l
. , | = 2250 (l - 0.694 sin 35.6")d r l

l r  =  0 .05s

- l34I elect deg/s2
Observe that as the rotor angle increases, the electrical power output of the

generator increases and so the acceleration of the rotor reduces.

12.6 STEADY STATE STABILITY

The steady state stability limit of a particular circuit of a power system is
definecl as the maximutn power that can be transmitted tri fhe receivino en;
without loss of synchronism. 

v'r6 vrru

Consider the sirnple system of Fig. 12.14 whose clynamics is describect by
equations

M* = P^ P" MW; Eq. (12.8)
d l

M H= 
7 

ln Pu sYstem

and p, = !4)! ) 
,in 6'= p^u*sin dx,t

For determination of steady state stability, the direct axis reactance (X.r) ant,
voltage behind X4 are used in the above equahons.

The plot of Eq. (12.46) is given in Fig. 12.6. Let the system be operaring
with steady power transfer of P^ = P^with torque angle d as indicated in the
figure. Assume a small increment AP in the electric power with the input from
the prime mover remaining fixed at p*(governor r.rforrr" is slow compared to

(12.4s)

(12.46'

L ltc..:'
]i;E!!";1&tffi

Linearizing about the operating point Qo (P"0, 4) *" can write

LP,= ( * ) .  o ,

The excursions of A d are then described by

no 9i+' - P^ - (P,o + aP,') = - L,P,
d,r

M d'+' *
d r

(r2.47)

where

The system
equation

P d
dt

stability to small changes is determined from the characteristic

Mp, +[#], =o

whosc two roots are

f  / t \ t r  , . 1  ( \  f {

P = + l - \ u 1 t 0 o ) o  l -
L M I

As long as (0P/0 0o it positive, the roots are purely imaginary and conjugate

and the system behaviour is oscillatory about do. Line resistance and damper

windings of machine, which have been ignored in the above modelling, cause

the system oscillations to decay. The system is therefore stable for a small

increment in power so long as

(a P,/aa| > o (12.48)

When (0 P/AD, is negative, the roots are real, one positive and the other

negative but of equal magnitude. The torque angle therefore increases without

bound upon occurrcncc ol a small powcr incretrtent (disturbancc) and the

synchronism is soon lost. The system is therefore unstable for

@ Pe/aDo < 0

@p/A[ois known as synchronizing cofficienr. This is also called stffiess

(electrical) of synchronous machine.
Assuming lEl and lVl to remain constant, the system is unstable, if



l E l l v l  
c o s  d ^ < o

X

po*e, systm st"uititv b{dffir-

o r  4 > 9 0 "
The maximum power that can be transmitted without loss of stabili

(12.4e)

and is given by
( r 2.s0)

(12.sr)
l E n v l

If the system is operating below the limit of steady stability condition (Eq.
12'48), it may continue to oscillate for a long time if the iamping is low.
Persistent oscillations are a threat to system security. The study oi system
damping is rhe study of dynamical stability.

The above procedure is also applicable for complex systems wherein
governor action and excitation control are also accounted for. The describing
di f ferent ia l  equat ion is l inear izecl  about the opcrat ing point .  Concl i t iep fbr
steady state stability is then determined from the corresponding characteristic
equation (which now is of order higher than two)

It was assumed in the above account that the internal rnachinc voltage
lEl remains constant (i.e., excitation is held constant). The result is that as
loading increases, the terminal voltage lv,l dips heavily which cannot be
toleratcd in practice. Thereforc, we must consicler the steady state stability limit
by assuming that excitation is adjusted for every load increase to keep
lv,l constanr. This is how the system will be operaied practically. It may be
understocd that we are still not considering the effect of automatic excitation
control.

steady state stabil ity l imit with lv,l anrt lvl constant is consiclered in
Example 12.6.

A synchronous generator of reactance 1.20 pu is connected to an infinite bus
bar (l Vl = 1.0 pr) through transformers and a line of total reactance of 0.60 pu.
The generator no load voltage is I .20 pu and its inertia constant is H = 4 MW-
silvIVA. The resistance and machine damping may be assumed negligible. The
system frequency is 50 Hz.

Calculate the frequency of natural oscillations if the generator is loaded to
(1) 50Vo and (ii) 80Vo of its maximum power limit.

Solution

(i) For 50Vo loading

I  ae1 L2xr
l - - e  |  _  ____  cos  30 "
L 06 Jro" 1.8

= 0.577 MW (pu)/elect rad

H 4
M(pu) = 

o*ro 
= 

t rx5o 
s?/crcct  ratr

From characteristic equation

-+i(WiY")u == i4.76

P^u*

P=tr[(*),,"1*)'

FrequencY of oscillations =

(ii) For 807o loading

4.76 railsec

4'76 -  0.758 Hz
2r

s i n  d o  = +  = 0 . 8 o r  6 = 5 3 . 1 "
P-u*

rqa) - r 'Zxr cos 53.1"
\  05  ) r r ,  1 .8

= 0'4 MW (Pu)/elect rad

p =!,  (q+k)* =* i3s6

Frequency of oscillations = 3.96 radlsec

P
sm do - i t

'  max

? q 6

')*

Find the steady state power limit of a system consisting of a generator

equivalent reactance 0.50 pu connected to an infinite bus through a series

rcactance gf 1.0 pu. The terminal voltage of the generator is held at 1.20 pu and

the voltage of the infinite bus is 1.0 pu.

Solution

The system is shown in Fig. 12.16. Let the voltage of the infinite bus be taken

as reference.
= 0 . 5 o r  4 = 3 0 o



Then

Now

V = 7 . 0  / - f f ,

I _

lE4t6

E = Vt + jXdI = 1.2 l0 + j0.5

or

Now

0 = 73.87"

Vt = 1.2 /.73.87" = 0.332

r _ 0.332+.ir.rs2_r
= t. t52 + j0.669

E -0.332 + jr .r52 + 70.5 (1.152 + j0.668)
- 0.002 + j1.728 = 1.728 I90.

Steady state power limit is given by

p ^ u  - l E l l V l  1 . 7 2 8 x L
*= V;-+V 

= -- i5 = l '152 Pu

If instead, the generator emf is held fixed at a value of r.2pu, the steadystate power limit would be

P*"* = 
i# = o'8 Pu

It is observed that regulating the generator emf to hold the terminal generator', 'oltage at r.2 pu raises thepowerli.it frorn 0.g pr'ro r.r52pu; this is howthe voltage regulating loop helps in power system stab'ity.

Xa= O'5

I
Vt= 1.219

m Analysis

Vt = ! .2  l0

1 . 2 1 0 - 7 . 0
jI

V = 1.0100

Flg.  12.16

.E = l .g l0 _ 0.5 = (t .g cos e_ 0.5) + 71.g sin 0
Steady state porver rimit is reached when E has an angle of 6= 90o, i.e., its realpart is zero. Thus,

1 . 8 c o s  0 - 0 . 5 = 0

r .2 lg  -  1 .0r
I

L I
J

Power Srrstem Stahilitu EsE

A knowledge of steady state stability limit is important for various reasons. A
system can be operated above its transient stability limit but not above its
steady-tatelimit. Nowrwith increased fault el,earing speedsjt is possible to
make the transient limit closely approach the steady state limit.

As is clear from Eq. (12.51), the methods of improving steady state stability
limit of a system are to reduce X and increase either or both lEl and I Vl. If the
transmission lines are of sufficiently high reactance, the stability limit can be
raised by using two parallel lines which incidently also increases the reliability
of the system. Series capacitors are sometimes employed in lines to get better
voltage regulation and to raise the stability limit by decreasing the line
reactance. Higher excitation voltages and quick excitation system are also
employed to improve the stability limit.

I2.7 TRANSIENT STABITITY

It has been shown in Sec. L2.4 that the dynamics of a single synchrono,rs
machine connected to infinite bus bars is governed by the nonlinear differential
equation

+ j t .152

, ,  d '6M 
iF  

=P^-  P"

where P, = P-* sin d

- _  d 2 6
or M --+ - P*- P** sind

ot-
(r2.s2)

As said earlier, this equation is known as the swing equation. No closed form
solution exists for swing equation except for the simple case P- = 0 (not a
practical case) which involves elliptical integrals. For small disturbance (say,
gradual loading), the equation can be linearized (see Sec. 12.6) leading to the
concept of steady state stability where a unique criterion of stability
(APrlAd>0) could be established. No generalized criteria are available* for
determining system stability with large disturbances (called transient stability).
The practical approach to the transient stability problem is therefore to list all
important severe disturbances along with their possible locations to which the
systern is likely to be subjected according to the experience and judgement of
the power system analyst. Numerical solution of the swing equation (or
equations for a multimachine case) is then obtained in the presence of such
disturbances giving a plot of d vs. r called the swing curve. If d starts to
decrease after reaching a maximum value, it is normally assumed that the
system is stable and the oscillation of daround the equilibrium point will decay

tRecent literature gives methods of determining transient stability through
Liapunov and Popov's stability criteria, b:rt these have not been of partical use so far.
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and finally die out. As already pointed out in the introduction, important severe
distulbances are a short circuit or a sudden loss of load.

For ease of analysis certain assumptions and simplifications are always made
(some of these have already been made in arriving at the swing equation (Eq.
/ 1  / l  < . t \ \  a  r r  1 1 -

consequences upon accuracy of results.
1. Transmission line as well as synchronous machine resistance are

ignored. This leads to pessimistic result as resistance introduces damping term
in the swing equation which helps stability. In Example I2.11, line iesistance
has been taken into account.

2. Damping term contributed by synchronous machine damper windings is
ignored. This also leads to pessimistic results for the transient stability limit.

3. Rotor speed is assumed to be synchronous. In fact it varies insignifi-
cantly during the course of the stability transient.

4. Mechanical input to machine is assumed to remain constant durins the
transient, i.e., regulating action of the generator loop is ignored. This leais to
pessimistic results.

5. Voltage behind transient reactance is assumed to remain constant, i.e.,
action of voltage regulating loop is ignored. It also leads to pessimistic results.

6. Shunt capacitances are not difficult to account for in a stability study.
Where ignored, no greatly significant error is caused.

7. Loads are modelled as constant admittances. This is a reasonablv
accurate representation.

Note: Since rotor speed and hence frequency vary insignificantly, the network
parameters remain fixed during a stability study.

A digital computer programme to compute the transient following sudden
disturbance aan be suitably modified to include the effect of governlr action
and excitation control.

Upon occulTence of a severe disturbance, say a short circuit, the power
transfer between machines is greatly reduced, causing the machine torque
angles to swing relatively. The circuit breakers near the fault disconnect the

Power S','stem StabilitY ffiffi

p"rrnon.ntly till cleared manually. Since in the majority of faults the first

ieclosure will be successful, the chances of system stability are greatly

enhanced by using autoreclose breakers.

Fig.12.17

In the case of a perrnanent fault, this system completely falls apart. This will

not be the case in a multimachine system. The steps listed, in fact, apply to a

system of any size.

1. From prefault loading, determine the voltage behind transient reactance

and the torque angle 16o of the machine with reference to the infinite bus.

2. For the specified fault, determine the power transfer equation Pr(A during

^ault. In this system P" = 0 for a three-phase fault' ' 
'

From the swing equation starting with fi as obtained in step 1, calculate

das a function of time using a numerical technique of solving thetnon-

linear differential equation.

After clearance of the fault, once again determine P, (A and solve further

for d (r). In this case, P"(A = 0 as when the fault is cleared, the system

gets Cisconnected.

After the transmission line is switched on, again find P" (0 and continue

to calculate d (r).

If 6 (t) goes through a maximum value and starts to reduce, the system is

regarded as stable. It is unstable if d(r) continues to increase. Calculation

is ceased after a suitable length of time.

An important numerical method of calculating d(t) from the swing equation

will be giurn in Section 12.9. For the single machine infinite bus bar system,

stability can be conveniently determined by the equal area criterion presented

in the following section.

I2.8 EOUAL AREA CRITERION

In a system where one machine is swinging with respect to an infinite bus, it

is possible to study transient stability by means of a simple criterion, without

resorting to the numerical solution of a swing equation.

5 .

4.

5 .

6.



Consider the swing equation

&rt ,"= accelerating power
d26 I

AF 
=  

*@^-  P '1  =

M = !
rf

ln pu system (r2.s3)

Fig. 12.1g prot of 6 vs tfor stabre and unstabre systems

lf the system is unstable dcontinues to increase indefinitely with time and themachine loses synchronism. on the other hand, if the system is stable, 6(t)performs oscillations (nonsinusoidal) whose amplitude decreases in actualpraetice because of darnping terms (not included in the swing equation). Thesetwo situations are shown in nig. 12.1g. since the system is non_linear, thenature of its response 160l is not unique and it may exhibit instability in afashion different from that indicated in Fig. rz.rg,depending upon the natureand severity of disturbance. However. experience indicates ihai the response6!'l j" a power system generally falls in the two broad categories as shown inthe figure' It can easily be visualized now (this has also been stated earlier) thatfor a stable system, indication of stability will be given by observation of thefirst swing where dwill go to a maximum and will Jturt to reduce. This fact canbe stated as a stability criterion, that the system is stable if at some time
d 6  

= o
d t

and is unstable, if

d 6- -  > 0
<lt

for a sufticiently long time (more than 1 s will genera'y do).

(r2.s4)

(12.ss)

Multiplying both sides of the swing equation * 
[t#), 

we get

The stability criterion for power systems stated above can be converted intc
a simple and easily applicable form for a single machine infinite bus system.

2P" d6
M d t

Ifrtegrating, we have

(r2.s6)

where do is the initial rotor angle before it begins to swing due to disturbance.
From Eqs. (12.55) and (12.56), the condition for stability can be written as

6

o r  [ r " a d  - o
6,,

The condition of stability can therefore be stated as: the system is stable if the
areaunder Po(accelerating power) -dcurve reduces to zero at some value of
d In other words, the positive (accelerating) area under Po- 6curve must equal
the negative (decelerating) area and hence the name 'equal area' criterion of

lstability.
To illustrate the equal area criterion of stability, we now consider several

types of disturbances that may occur in a single machine infinite bus bar
system.

Sudden Change in Mechanical Input

Figure 12.t9 shows the transient model of a single machine tied to infinite bus
bar. The electrical power transmitted is given by

(r2.s7)

-->

Pm

Infinite
bus bar

lv l r0o

F ig .  12 .19
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l E t l l v l
P, = 

u, # sin d- P** sind
,  

n d T ^ e

Under steady operating condition

P.o = Pro = P** sin do

Flg. 12.20 P"- 6 diagram for sudden increase in mechanical input to
generator of  Fig.  12.19

This is indicated by the point ainthe Pr- 6 diagram of Fig. 12.20.
Let the mechanical input to the rotor be suddenly increased to Pn (by

opening the steam valve). The accelerating power 1o = P*t - P, causes'the
rotor speed to increase (u> a,,r) and so does the rotor angle. At angle 6r,,
Po= P*r- Pr(= P-* sin 4) = O (state point atb)but the rotor angle continues
to increase as t., ) ur.Po now becomes negative (decelerating), the rotor speed
begins to reduce but the angle continues to increase till at angle 6., a= ur once
again (state point at c. At c), the-decelerating area A, equals the accelerating

bc

area A, (areas are shaded), j.e., 
J ,, Od = 0. Since the rotor is decelerating,
6o

the speed reduces below ur and the rotor angle begins to reduce. The state point
now traverses the P, - 6 curve in the opposite direction as indicated by arrows
in Fig. 12.20.It is easily seen that the system oscillates about the new steady
state point b (6= 4) with angle excursion up to 6 *d 4.on the two sides.
These oscillations are similar to the simple harmonic motion of an inertia-spring
system except that these are not sinusoidal.

As the oscillations decay out because of inherent system damping (not
modelled),.the system settles to the new steady state where

P^t = P, = Prn.* sin dl

6 b f i 6 2
% 

?' i  
( 's

Q  < ( 4

4n

A r = ) ( P n - P " ) d 6

A z = i < r , - P ^ ) d 6
6l

be possible to find angle d2 such that

rg condition is finally reached when 41

own in Fig.l2.2L Under this condition,

hat

6 .  =  6 ^ o =  T  -  6 t = n'-sin-l 
+:

(12.58)

Fig. 12.21 Limiting case of transient stability with mechanical input

suddenlY increased

Any turther increas e in P ̂ , means that the area available for A, is less than A1'

so that the excess kinetic energy causes d to increase beyond point c and the

decelerating power changes over to accelerating power, with the system

consequently becoming uistable. It has thus been shown by use of the equal

area criterion that there-is an upper limit to sudden increase in mechanical input

(P^r- Po,s), for the system in question to remain stable'
' 'ii 

',,uy'ulso be not"i from Fig. 12.21that the system will remain stable even

though the rotor may oscillate beyo-nd -{^=.90"' 
so long as the equal area

criterion is met. The condition of d = 90" is meant for use in steady state

stability only and does not apply to the transient stability case'
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Effect of Clearing Time on Stability

Let the system of Fig. 12.22 be operating with mechanical input P^ at a steady
angle of d0 (Pn,= P") as shown by the point a on the Pr- 6 cliagram of Fig.
12.23.If a 3-phase fault occurs at the point P of the outgoing radial line, the
electrical output of the generator instantly reduces to zero, i.e,, p, = 0 and the
state point drops to b. The acceleration area A, begins to increase and so does
the rotor angle while the state point moves along bc. At time /. corresponding
to angle 6, the faulted line is cleared by the opening of the line circuit breaker.
The values of /, attd 4 are respectively known as clearing time and, clearing
angle. The system once again becomes healthy and transmits p, = p,ou,. sin d
i.e. the state point shifts to d on the original P, - d curve. The rotor now
decelerates and the decelerating area A, begins while the state point moves
along de.

F19.12.22

If an angle fi can be found such that A2= Ap the system is found to be stable.
The systern finally settles down to the steady operating point a rn an oscillatory
manner because of inherent damping.

| /'-\
- l l \

|-t___j co )- l  \ - /

Pe

D, max

Pm

6 e l f . "

P"=o -.--/ i
(3-phase fault) Clearing

61

angle

Fig. 12.23

l':fiffn#;i;Power a

t rresponding to a clearing angle can be
established only by numerical integration except in this simple case. The equal
area criterion therefore gives only qualitative answer to system stability as the
time whgn the breaker should be opened is hard to establish.

Pe

D' max

I d", 6r"*
+

Critical clearing
angle

Fig. 12.24 Critical clearing angle

As the clearing of the faulty line is delayed, A, increases and so\oes d, to
find A2 = Ar till 6r = 6^ as shown in Fig. 12.24. For a clearing time (or angle)
larger than this value, the system would be unstable as A, < Ar The maximum
aiiowabie vaiue of the clearing time and angle for the system to remain stabie
are known respectively as critical clearing time and angle.

For this simple case (P, = 0 during fault), explicit relationships for 6,
(critical) and t" (critical) are established below. All angles are in radians.

It is easily seen from Fig. 12.24 that

Pm

4 n u * = T -  d ;

and P*= Pr* sin 6o

Now

A t = (P^ --0) d 6 = P^ (4, - 6)

A z = (P** sin d- P^) d6

(  12.59)

(r2.60)

uct

J
h

6 ^ ^

J
6,,

and

= P.u* (cos d, - cos d-*) - P* (6^o - 6"i)
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For the system to be stable, A2= A1, which yields

cos {. = !^ (5,^^" -
Prn* 

\ -tniu( d) + cos 4o"*

where 4, = critical clearing angle
Substituting Eqs. (1259) and (12.60) in Eq. (12.61), we get

4r = cos-t [(r, _ Z6l sin do _ cos 6o]
During the period the fault is persisting, the swing equation is

d,2 d rf

d,r, 
= 

1r: 
P^: P, = o

Integrating twice

P*tz + $

/cr = critical clearing time

4, = critical clearing angle
From Eq. (12.6a)

6 = -,rf-
2H

0" ,=#  P ;2 " ,  160

(r2.61)

(r2.62)

(12.63)

(12.64)

(r2.6s)

where

where d, is given by the expression of Eq, (12.62)
An explicit relationship I 'rrr clctenninirtg r., i , porisiblc in this case as tluringthe faulted condition p" = o and so trre ,wing equation can be integrated inclosed form. This will not be the case in mosi other situations.

Sudden Loss of One of parallel Lines

consider now a single machine tied to infinite bus through two parallel l ines asin Fig. 12.25a. circuit model of the sysrem is given in Fig. r2.25b.
Let us study the transient stability of the ,yir"rn when one of the lines issuddenly switched off with the system operating at a steady road. Beforeswitching off, power angle curve is given by

P " r =  l E ' l l v l

xa i xt l lx2 
sin d= Pm*l sin d

Immediately on switching off line 2, power angre curve is given by

P"n = g:+ sin d= pmaxr sin d
,\d -T rt7

2H(6, ,  -  4 )
TrfP*

,, /__\ l_Lr__l I Infinite
, .774 )  |  I  - l  bus

P m  t t  \ - - l  I V V O "
L r l

IVVO"

(b)

Fi1.12.25 Single machine tied to infinite bus through two par:allel l ines

Both these curves are plotted in Fig. 12.26, wherein P-u*n ( P_u*r as (Yo * Xr)
> (Ya + Xr ll X).The system is operating initially with a steady power transfer
Pr= P^ at a torque angle 4 on curve I.

Immediately on switching off line 2, the electrical operating point shifts to
curve II (point b). Accelerating energy corresponding to area A, is put into rotor
followed by decelerating energy for 6 > q. Assuming that an area A2
corresponding fo decelerating energy (energy out of rotor) can be found such
that At = Az, the system will be stable and will finally operate at c
corresponding to a new, rotor angle 6, > 60" This is so because a single line
offers larger reactance and larger rotor angle is needed to transfer the same
steady power.

Fig.12.26 Equal area criterion applied to the opening of one of the two
lines in parallel

W

(a)

/ 

," (both lines in)
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4 = 4 o * _ T _ 6 ,
which is the same condition as in the previous example.

Sudden Short Circuit on One of parallel Lines

Case a: Short circuit at one end of line

Let us now assume the disturbance to be a short circuit at the generator end of
line 2 of a double circuit line as shown in Fig. 12.27a. We shall assume the
fault to be a three-phase one.

Power Sy-t-- St"blllry
-

via the healthy line (through higher line
reactance X2 in place of Xl ll Xz)7; with power angle curve

sln sin d

obviously, P-o[ ( P-"*r. The rotor now starts to decelerate as shown in
Fig. 12.28. The system will be stable if a decelerating area A, can be found
equal to accelerating area A, before d reaches the maximum allowable value
4o*.At areaA, depends upon clearing time /. (corresponding to clearing angle
{), clearing time must be less than a certain value (critical clearing time) for
the system to be stable. It is to be observed that the equal area criterion helps
to determine critical clearing angle and not critical clearing time. Critical
clearing time can be obtained by numerical solution of the swing equation
(discussed in Section 12.8).

P"y, prefault (2 lines)

P6n1, postfault (1 line)

? t 6

Ffg. 12.28 Equal area criterion applied to the system of Fig. 12.24a,
I system normal, ll fault applied, lll faulted line isolated.

It also easily follows that larger initial loading (P.) increases A, for a given
clearing angle (and time) and therefore quicker fault clearing would be needed
to maintain stable operation.

Case b: Short circuit away from line ends

When the fault occurs away from line ends (say in the middle of a line), there
is some power flow during the fault though considerably reduced, as different
from case a where Pen = 0. Circuit model of the system during fault is now
shown in Fig. 12.29a. This circuit reduces to that of Fig. 12.29c through one
delta-star and one star-delta conversion. Instead, node elimination technique of
Section 12.3 could be employed profitably. The power angle curve during fault
is therefore given by

P" t=  
|  E l l v l  

s in  d=  Pmaxr r  s in  d
'1r'II

X2

, (b)

F19.12.27 Shoft circuit at one end of the l ine

Before the occurrence of a fault, the power angle curve is given by
'-- 

p"t = ,)4,'rlr,,,a, sin d= p_*, sin d' xi + xltx2
which is plotted in Fig. 12.25.

Upon occulrence of a three-phase fault at the generator end of line 2 (see
Fig. I2.24a), the generator gets isolated from the power system for purposes of
power flow as shown by Fig. 12.27b. Thus during the period the fauit lasts,

The rotor therefore accelerate, .i;t:;i"s dincreases. synchronism will be
lost unless the fault is cleared in time.

The circuit breakers at the two ends of the faulted line open at time tc
(corresponding to angle 4), the clearing time, disconnecting the faulted line.
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system operation is shown in Fig. 12.30, wherein it is possible to find an area

A, equal-to A, for q. < 4nu*. At the clearing angle d. is increased, area

ai increat"t und to nna Az = Ar, 4. increases till it has a value 4n*' t6"
-ooi*,,- ollnrvohle fnr stahilitv This case of critical clearine angle is shown

in Fig. 12.3L

Pe

Fig. 12.31 Fault on middle of one line of the system of Fig. t2.l4a, case of
critical clearing angle

Annlvins eoual area eriterion to the case of critical clearing angle of Fig. 12.31'

we can wnte

4, 
dntn'

j  (P^- 4n*u sinfldd= J {r^*r sind- P^) d6
60 6,,

(c)

Fig. 12.29

P"rand P,u as in Fig. 12.28 and Per as obtained above are all plotted in Fig.

I2.3O. Accelerating area A, corresponding to a given clearing angle d is less

Pe

Fig. 12.30 Fault on middle of one line of the system of Fig. 12.24a
with d" < {,

X6x,t

(b)

Xr

where

4,,* =T - sin-r (:t_)
V maxIII ./

Integrating, we get

l6*
(P^a + Pmaxrr cos d) | * (P'*,,1 cos d +

1 6 o

or

(r2.66)

= Q

P^ (6", - 6) * P.u*u (cos '[. - cos do)

I P* (6** - 6"r) * P-om (cos fi* - cos 4J = 0

Pr1, prefault (2 l ines)

P6111, postfault (1 line)

xcG @

,.a 
P"'Prefault (2 l ines)

P"11;, postfault (1 l ine)

P"11, during fault



t

cos {r = :otd",*
4naxtn 

- PmaxII

critical clearing angle can be calculated from Eq. (12.67) above. The angles in
:lt::t1|on 

are in radians. The equation mooiiies as below if the angJes areln oegrees.

cos {. 
- ft 

r.(6 ^i* - do ) - Pmaxrr cos do * prnu*ru cos d,ou*

Pmaxltr - Prnaxn

Case c: Reclosure

If the circuit breakers of line 2 are reclosed successfully (i.e., the fault was atransient one and therefore vanished on clearing the faurty line), the power
transfer once again becomes

P"N = P"r= p*u*I sin d
Since reclosure restores power transfer, the chances of stable operati'nimprove. A case of stable operation is indicated by Fig. 12.32.

For critical clearing angle

(Clearing angle) \
(Angle of reclosure )

Fig- 12-32 Faurt in middre of a rine of the system of Fig. 12.27a
where trrj tr, + r; T = time betw,een clearing ancl reclosure.

(12.67)

4 = 4r* = 1T - sin-l 1p_/p*.*r;
tuc r  

6 r c

J @r,- Pmaxrr sin 0 dd = 
J (p.*m sin d_ pm) d,6

60 6r,

dru,
t

+ J (P,*r sin d_ p^) d6
6.-

i0.s

Give the system of Fig.
P as shown.

12,33 where a three-phasc fault is applied at rhe point

Infinite
bus

vFlloo

Flg. 12.33

Find the critical clearing angle for clearing the fault with simultaneous opening
of the breakers I and 2. T\e reactance values of'various components are
indicated on the diagram. The generator is delivering 1.0 pu power at the instanr
preceding the fault.

Solution

With reference to Fig. 12.31, three separate power angle curves are involved.

f. Normal operation (prefault)

Xr=0.2s+f f i+0 .05

= 0.522 pu

p,t=rysind: 
ffirino

= 2.3 sin d (i l

Prefault operating power angle is given by

1.0 = 2.3 sin 6
or 6o =25.8" = 0.45 radians

IL During fault

It is clear from Fig. 12.31 that no power is ffansferred during fault, i.e.,

,0.:"o 

= o

t r i n  1n  1A
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rrr. Post fault operation (fault cleared by openingr the faulted
Iiae)

U
E

= - 1.5 (cos 2.41 - cos 6,) - (2.41 - 6")

= 1.5 cos 6", + 6r, - I.293

Setting A = Az and solving

6r, - 0.45 = 1.5 cos 6r, + 6r, - 1.293

or cos {,. = 0.84311.5 - 0.562

or 4, = 55.8"

The corresponding power angle diagrams are shown in Fig. 12.35.

Find the critical clearing angle for the system shown in Fig. 12.36 for a three-
phase fault at the point P. The generator is delivering 1.0 pu power under
prefault conditions.

n l.2xl.0Perrr= 
ff 

sin d= 1.5 sin 6 (iii)

Pe

Pn=1 'O

66=0.45 rad 6^rr=2.41 rdd

Fig. 12.35

T T t o  - o o i * " *  - ^ * : ^ ^ : L l ^  ^ - - l ^  C  f ^ -  - - - - -  ^  .
rrrw urour.rLurr psl l luDDlulc al i lBrtr Omax l()f  afea Al = A2 (Sge f lg.

given by

4 o u * = r - s i n - l  I  =  2 . 4 L r a d i a n s
1.5

Applying equal area criterion for critical clearing angle {
Ar = P^ (6", - 6)

= 1.0 (6", - 0.45) = 6c, - 0.45

dr*

A z =  ! { r , n - p ^ ) d , 6
6,,

2 .41
I= |  (1 .5  s in  6 -  1 )  dd

J
6.,

r 2 . 4 1

= - 1 . 5 c o s  d _  d l
| 6",

i0.1 5 i  0.1s

lnfinite
bus

lvF1.otoo

.10.15 jo.15

Flg. 12.36

Solution

f, Prefault operation Transfer reactance between generator and infinite
bus is

& = 0.25 + 0.17 +
0 .15+0 .28+0 .15= 0.71

12.35) is

P- ,  = r 'Zx l  s in  d=  1 .69  s inc '  0.71
(i)

2

6

The operating power angle is given by

1.0 = 1.69 sin ,fr

or do = 0.633 rad

IL Durtng fault The positive sequence reactance diagram during fault is
presented in Fig. 12.37a.

lF,l=1.2 Pu



j0.25
J 000 L /  000 L--- - - - - - - - r  000 \ -

j0 .15 j0.14 j0.14 j0.'15

jo .17

++

0 '

) E1=t.z V=1.0

(a) Positive sequence reactance diagram during fault

j0.25 j0.145 j0.145 ', j0.17

lE'l=1.2 V=1.OlOo

(b) Network after ddlta-star conversion

l9l=1'z V=1.0100

(c) Network after star-delta conversion

. Ftg. 12.32

Converting delta to star*, the reactance network is changed to that of Fig.
12.37(b). Further, upon converting star to delta, we obtain the reactance
network of Fig. .r2.37(c). The transfer reactance is given 6y

(0.2s + 0.145) 0.072s + (0.145 + 0.17) 0.0725 + (0.25 + 0.145)

X u = (0.14s + 0.17)
0.075

_ 2.424

p - = lal! sin d = 0.495 sin 6r eI - 
i.+Z+ 

uur v - v.a/,

Postfault operation (faulty line switched off)

Xr l  =0 .25  +  0 .15  +  0 .28  +  0 .15  +  0 .17  =  1 .0

*Node elirnination technique would be'used for complex network.

fir.

(ii)

Power System Stabilit-v Mi#ffir*
Perrr=U! sin d = r'2 sin 6' l

With reference to Fig. 12.30 and Eq. (12.66), we have

(iii)

To find the cqitical clearing angle, areas A1 and A, arc to be equated.
6",

At = l.o (6,,- 0.633) - , J o.+e5 sin d dd
60

and

dmax
f

Az = |  1 .2 s in  ddd-  1.0 (2.155 -  4)- J

6-cr

Now

A t  = A z

or

6r, = 0.633 ---

o

2.155

= [ t.Z rin 6 d6 - 2.t55 + 6,,
J '
6cr

or - 0.633 + 0.495 cos olo' = - 1.2 cos ol"tt -2.155
lo.orr la.,

or - 0.633 + 0.495 cos 6,, - 0.399 = 0.661 + 1.2 cos 6", - 2.155

or cos 6r, = 0.655

U 6r, = 49.I"

A generator operating at 50 Hz delivers 1 pu power to an infinite bus through
a transmission circuit in which resistance is ignored. A fault takes place
reducing the maximum power transferable to 0.5 pu whereas before the fault,
this power was 2.0 pu and after the clearance of the fault, it is 1.5 pu. By the
use of equal area criterion, determine the critical clearing angle.

Solution

All the three power angle curves are shown in Fig. 12.30.

J
.63

0.495 sin d dd
J
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Ilere P-"*r =2.0 pu, Pmaxl = 0.5 pu and Pmaxrrr = 1.5 pu

Initial loading P^ = 1.0 pu

Applying Eq.

cos {, -

( p \

6r,ro= zr sin I 
tffiJ

E 7 - s i n l  1  : 2 . 4 ! r a d
1.5

(r2.67)

1.0(2.41 - 0.523) - 0.5 cos 0.523 + 1.5 cos 2.41 = o ???
1.5 -- 0.5

6r, = 70'3"

T2.9 NUMERICAT SOTUTION OF SWING EOUATION

In most practical systems, after machine lumping has been done, there are still

more than two machines to be considered from the point of view of system

stability. Therefore, there is no choice but to solve thp swing equation of each

machine by a numerical technique on the digital computer. Even in the case of

a single machine tied to infinite bus bar, the critical clearing time cannot be

obtained from equal area criterion and we have to make this calculation
!  .  . r r - -  r r - - - - - -  - l -  - - - - : -  -  - - - - - L l ^ ,  z F L ^ - ^  |  - ^ - L l ^ + i ^ ^ + ^ l  * ^ + L ^ l -

numerlca[y mrougn swulg equauulr. t rttrIc aIU ssvtrIi lr JuPurDtruilL('(l l l lELlluLlD

now available for the solution of the swing equation including the powerful

Runge-Kutta method. He.re we shall treat the point-by-point method of solution

which is a conventional, approximate method like all numerical methods but a

well tried and proven one. We shall illustrate the point-by-point method for one

machine tied to infinite bus bar. The procedure is, however, general and can be

applied-to every machine of a multimachine system.
Consider the swing equation

d26 1 --
; T  

=  
; e * - P ^ * s i n d ) :  

P o l M ;

(* - 9H orin pu system M = +)
\ 7t iTf)

The solution c(r) is obtained at discrete intervals of time with interval spread

of At uniform throughout. Accelerating power and change in speed which are

continuous functions of time are discretrzed as below:
1. The accelerating power Po computed at the beginning of an interval is

assumed to remain constant from the middle of the preceding interval to the

middle of the interval being considered as shown in Fig. t2.38.

r>2 n-1

Discrete solution

n

Continuous solutionU

un-|/2

u13/2
un-I/T-+tsn4l2

n-2 p3l2 n-'l r>112 n

6n-z

n-2 n-1 n

Fig. 12.38 Point-by-point solut ion of swing equation

In Fig. L2.38, the numbering on tl\t axis pertains to the end of intervals. At
the end of the (n -l)th interval, the acceleration power is

Pa (n_r)-- Pm- P-* sh 4-r Q2.68)

where d_1 has been previously calculated. The change in velocit! (a= d6ldt),
caused by the Pa@-r), assumed constant over At from (n-312) to (n-ll2) is

t
Af

- t
Af

$n-i

J-
Af

wn-'2- wn-3t2= (Lt /M) Pa@-r)

The change in d during the (n-l)th interval is

L6r-t= 6r-1 - 6n-2= A'tun4'2

and during the nth interval

L6r-  6n- 6n-t= / \ tun-112

(12.6e)

(12.70a)

(12.70b)

2.The angular rotor velocity u= d6ldt (over and above synchronous velocity

t
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Subtracting Eq. (12.70a\ from Eq. (12.70b) and using Eq. (12.69), we get

L'6,= A6,-t +

Using this, we can write

(12.7r)

6n = 6n-t + L,6n G2.72)

The process of computation is now repeated to obtain Pa61, L6r*tand d*t. The
time solution in discrete form is thus carried out over the desired length of time,
normally 0.5 s. Continuous form of solution is obtained by drawing a ;mooth
curve through discrete values as shown in Fig. 12.38. Greater accuracy of
solution can be achi.eved by reducing the time duration of intervals.

The occurrence or removal of a fault or initiation of any switching event
causes a discontinuity in accelerating power Po.lf such a discontinuity occurs
at the beginning of an interval, then the average of the values of Po before and

after the discontinuity must be used. Thus, in computing the increment of angle
occurring durirrg the first interval after a fault is applied at t = 0, Eq. (I2.7I)

becomes

7, ,6 ,  =  
(Ar ) t  

*Pao+, M 2

where Pos* is the accelerating power immediately after occurrence of fault.
Immediately before the fault the system is in steady state, so that Poo- = 0 and
ds is a known value. If the fault is cleared at the beginning of the nth interval,

in calculation for this interval one should use for Pa@-r) the value llP"6-r>-
+ Po6_9*), where Pa@_r)- is the accelerating power immediately before clearing
and Po6_r)+ is that immediately after clearing the fault. If the discontinuity
occurs at ihe miciciie of an intervai, no speciai proceciure is neecled. The
increment of angle during such an interval is calculated, as usual, from the
value of Po at the beginning of the interval.

The procedure of calculating solution of swing equation is illustrated in the
following example.

A 20 MVA, 50 Hz generator delivers 18 MW over a double circuit line to an
infinite bus. The generator has kinetic energy of 2.52 MJA4VA at rated speed.
The generator transient reactance is X/o = 0.35 pu. Each transmission circuit
has R = 0 and a reactance of 0.2 pu on a 20 MVA bgq-e. lE/l = 1.1 pu and
infinite bus voltage V = 7.0 10". A three-phase short circuit occurs at the mid
point of one of the transmission lines. Plot swing curves with fault cleared by
simrrltaneous opening of breakers at both ends of the line at2.5 cycles and 6.25
cycles after the occuffence of fault. Also plot the swing curve over the period
of 0.5 s if the fault is sustained.

(A  r )2  D
M 

r  a ( .n - I )

power System Stabilitv 
[i{8il;r

Q ^ t , , 1 ; ^ ^  E  ^ f ^ - ^  ^ - * 1 , ,  + L ^  ^ + ^ -  L . .  ^ + ^ -  - ^ r l . ^ l  -  ^  - t  ^ -  -  - r  - - - r - a -\rvtu.,v,t  nsluls ws Lal l  aPPt.y ult t  stEP-Uy-slt tP l I IculUU, Wtr l l t rC(l  t()  Calculate

the inertia constant M and the power angle equations under prefault and
postfault conditions.

Base MVA = 20

IneRia coflstant, Mepu\ =
180 /

1.0 x L52
180 x 50

I I Prefault

= 2.8 x 10+ s2le\ect degree

& = 0 . 3 5 +  
0 ' 2  = 0 . 4 5' 2

Pd= Pr.*r sin d

! , . l x t  .  r= -'.-;;sin d = 2.M sin 5 (i)

Prefault power transf'er = + = 0.9 pu
20

Initial power angle is given by

2 . 4 4 s i n 4 = 0 . 9

or 6o= 21.64" 
\

II During fault A positive sequence reactance diagram is shown in Fig.
12.39a. Converting star to delta, we obtain the network of Fig. 12.39b, in which

, ,  0.35 x 0. i  + A.2x0. i  + 0.35x0.2 1 A-trtr = - 
0l 

-= I..Z) pu

P.u = Pmaxtt sin d

- 1'1x 1 r;n d = 0.88 sin 6
1.25

(ii)

Fig.  12.39



lil. Postfault With the faulted line switched off,

J;=:::,J;2 
-055

1 . 1 x 1  .  I=  : : :  t ' - '  s in  d  = 2 .0  s in  d

Let us choose Al = 0.05 s

The recursive relationshi'ps for step-by-step swing
reproduced below.

Pa(n_r)= P^ - P** sin 4_r

L6n= L6n-t * 
(Lt)z 

o '
M 

' a(n-l)

6n= 6n-t + A,6n

curve calculation are

(iv)

(v)

(vi)

Since there is a discontinuity in P, and hence in Po, the average value of po
must be used for the first interval.

P"(0-) = 0 pu and Po (0*) = 0.9 - 0.88 sin 2I.64" = 0.576 pu

Po(ouu.,us"l = 9t#ZQ = 0.288 pu
L

Sustained Fault

Calculations are carried out in Table 12.2 in accordance with the recursive
relationship (iv), (v) and (vi) above. The second column of the table shows P-*
the maximum power that can be transferred at time r given in the first column.
Pn * in the case of a sustained fault undergoes a sudden change at t = 0* and
remains constant thereafter. The procedure of calculations is illustrated below
by calculating the row corresponding to t = 0.15 s.

(0 ' l  sec)  =  31 .59"

P."* = 0.88

sin d (0.1 s) = 0.524

P, (0.1 s) = P,,,u* sin 6 (0.1 s) = 0.88 x 0.524 - 0.46I
P, (0.1 s) = 0.9 - 0.46I - 0.439

( At\2
YP, (0.1 s) = 8.929 x 0.439 - 3.92

M

6 (0.1s s) = Ad (0.1 s) + qL P, (0.1 s)
M U \

= J.38" + 3.92" = 11.33"
d (0.15 s)  = d (0.1 s)  + Ad (0.15 s)

= 31.59" + 11.30' = 42.89"

which it is obvious that the systern is unstable'

fault cleared
at 2.5 cycles

I t l l t l l l i i
o  0 .1  0 .2  0 .3  0 .4

_ r l

f (s) --
0 .5  0 .6

Fig. 12.40 Swing curyes for Example 12.10 for a sustained fault and for

clearing in 2.5 and 6.25 cYcles

! A  A  n ^ i - .  l - . ,  ^ a i a *  r r a t i n n c  n {  c r r r i n n  n r r n / a  f n r  q t r c t a i n a r l  f a t t l t
a a D l e  a Z . Z  f U l l l l ' - U y - P u l l l t  t / v l l l P u t q r r v r r o  v r  e r ' r r r V  v u '

/ f  = 0.05 s

t
; 100
o
E
@

o 8 0
o)
c
(5

o

i o o
P

t P^u sin 6 P"=Prrr,*sin6 P,,= 0'9- P,

sec pu Pu Pu

a 6 6

deg deg

2.44
0.88

0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88

0.368
0.368

0.0
0.576

2.57
4.8r
3.92
2.68
r.45
0.55
0 . 1 8
0.426
1.30
2.87

2.57
7.38

1 1 . 3 0
1 3 . 9 8
15.43
15.98
r6 . r6
16 .58
r7 .88
20.75

2r .64
2r.64
74.21
31.59
42.89
56.87
72.30
88.28

r04.44
r2r.02
138.90
1s9.65

0+
o^u,
0.05
0 . 1 0
0 .  t 5
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0324

0.361
0.46r
0.598
0.736
0.838
0.879
0.852
0.154
0.578

0.368
0.41
0.524
0.680
0.837
0.953
0.999
0.968
0.856
0.657

0.288
0.539
0.439
0.301
0.163
0.06
0.021
0.048
0.145
0.32r
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Time to clear f'ault = 2.5 = 0.05 s
50

P-u^ suddenly to 2.0 at t = 0.05-. Since the

be assumed to remain constant fr-om 0.025 s to 0.075 s. The rest of theprtrcedure is the same ancl complete calculations are shown in Table 12.3. The
swing curve is plotted in Fig. 12.40 from which we find that the generator
undergoes a maximum swing of 37.5" but is stable as c5 finaily begins to
decrease.

Table 12'3 Computations of swing curyes for fautt cleared at2.s cvcles
(0.05 s),  At  = 0.05 s

6

deg

P,,,,,^

pu

.sin. 5 Pr,=P,rr.,*,tin5 pr,= 0.9- pu

pu pu

A 6

deg

0
0 .

T

ouu,

0.05
0.05+
0.05uus
0 . 1 0

0 . i 5
o.20
0.25

0.30
0.35
o.40

0.45
0.50

2.44 0.368
0.88 0.368

0.368
0.88  0 .41
2.00 0.41

0.0
0.576
0.288

0.54
0.08
0.31

- 0.086
- 0.22
- 0.29
- 0.29
- 0.22
- 0.089

0.08

0.225

0.9
0.324

0.36
0.82

0.986

I . t 2
T . I 9
r . t 9

I . t 2
0.989
0.82

0.615

2.57 2.57

21.64
21.64
21.64

24.21
24.21
24.21
29.54

34.10
36.70
37.72
34.16
29.64
24.33
19.73
17.13

2.00

Z.UU
2.00
2.00
2.00

2.00
2.00
2.C0

0.493

0.56
0.s91
0.597

0.561
0.494
0.41
0.337

2.767 5.33
- 0.767 4.56
- 1.96 2.60
- 2.s8 0.02
- 2.58 -  2.56
-  1 .96  _  4 .52
-  0 .79  _  5 .31

0.71  -  4 .60
2.0 -  2.6

Fault Cleared in 6.25 Cycles

Time to clear fault = ua?t = 0.125 ss0

l t r

progressively greater clearing time till the torque angle d increases without
bound. In this example, however, we can first find the critical clearing angle
using Eq. (12.67) and then read the critical clearing time from the swing curve
corresponding to the sustained fault case. The values obtained are:

Critical clearing angle = 118.62

Critical clearing time = 0.38 s

Table 12.4 Computations of swing curve for fault cleared at
6.25 cycles (0.125s),  Af  = 0.05 s

P,no

pu

sin 6 P"=P^ *sin6 Po= 0.9- P" 4 6 6

deg deg

0 2.44
0+ 0.88
ouu,
0.05 0.88
0.10  0 .88
0.15  2 .O0
0.20 2.00
0.25 2.00
0.30 2.00
0.35 2.00
0.40 2.00
A  A ?    ' \ N

u .4J  Z .W

0.50 2.oo

0.368
0.368
0.368
0.41
0.524
0.680
0.767
0.78
0.734
0.613
0.430
u. z-1-1

0.9
0.324

0.36r
o.46t
1 . 3 6
1 . 5 3
1 . 5 6
1.46
r .22
0.86
u.4c)0

0.0
0.576
0.288
0.539
0.439

- 4.46
- 0.63
- 0.66
- 0.56
- 0.327

0.04
u.4-J4

2.57
4.81
3.92

-  4 . 1 0
-  5 .66
-  5 .89
- 5.08
- 2.92

0.35
-r .6 /

.  2 r .&
21.64

2.57  z t .U
7.38 24.2r

11 .30  3 t .59
7.20 42.89
r.54 50.09

-  4 .35  51 .63
- 9.43 47.28

- 12.35 37.85
- 12.00 25.50
- u.  t -J l_J.)u

5 .37

T2.TO MULTIMACHINE STABITITY

From what has been discussed so far, the following steps easily follow for
determining multimachine stability.

1. From the prefault load flow data determine E/ovoltage behind transient
. reactance for all generators. This establishes generator emf magnitudes

lEll which remain constant during the study and initial rotor angle
6f = lEt. Also record prime mover inputs to generators, P*o - PoGk

2. Augment the load flow network by the generator transient reactances.
Shift network buses behind the transient reactances.

3. End Inus for various network conditions*during fault, post fault
(faulted line cleared), after line reclosure.

4. For faulted mode, find generator outputs from power angle equations
(generalized forms of Eq. (12.27)) and solve swing equations step,by
step (point-by-point method).
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5. Keep repeating the above step for post fault mode and after line
reclosure mode.

6. Examine d(r) plots of all generators and establish the answer to the
stability question.

The above stgps are illustrated in the following example.

A 50 Hz, 220 kV transmission line has two generators and an infinite bus as
shown in Fig. 12.4I. The transformer and line data are given in Table I2.5. A
three-phase fault occurs as shown. The prefault load flow solution is presented
in Table 12.6. Find the swing equation fbr each generator cluring the fault
period.

o Vz=1.0328.2350 o
(

l-l- i

Se
).5+j(

F1.O217.16o

)vs=1.o l l z
22.490

6)

) v i

[5,

t-
I'

i6,u

o
Fig. 12.41

Data are given below for the two generators on a 100 MVA base.
Gen 1 500 MVA, 25 kV, XJ = 0.067 pu, H = 12 MJAyIVA
Gen 2 300 MVA, 20 kV, X,j = 0.10 pu, H = 9 MJA4VA

Plot the swing curves for the machines at buses 2 and 3 for the above fault
which is cleared by simultaneous opening of the circuit breakers at the ends of
the faulted line at (i) 0.275 s and (ii) 0.0g s.

l,,m
220kV,100 MVA base

Bus to bus Series Z HaIf line charging

Line 4-5
Line 5-1
Line 4-I
Trans;2-4
Trans: 3-5

0 .018
0.004
0.007

0 . 1 r
0.0235
0.04
o.022
0.04

0 . 1 1 3
0.098
0.041

Tabfe 12.6 Bus data and prefault load-flow values in pu on 220 kV,
100 MVA base

S.No. Voltage
and Polar

Bus Form
No.

Bus
Upe

Voltage Generation Load

Real Imaginary
e f

| 1.010" Slack

2 t.0318.35" PV

3 t .0217.16  PV

4 1.017414.32" PQ

5 1 . 0 1 1 2 1 2 . 6 9 "  P Q

0.0 -  3.8083

0.1475 3.25
0.1271 2 .10

0.167 0

0.0439 0

-0.2199 0 0
0.6986 0 0
0 . 3 1 1 0  0  0
1.0 1.0 0.44
0 0 .5  0 .16

1.00
t.0194
1 . 0 1 2 1
1.0146
1.0102

Solution Before determining swing equations, we have to find transient

internal voltages.
The current into the network at bus 2 baseci on the <iata in Tabie i2.6 is

r -_  Pr - iQ ,  _  3 .25- i0 .6986
'z  

v :  r .o3 l -  8 .23519"

E{= (1.0194 + j0.1475) +
3.2s - j0.6986

x 0.06719V
r.03 l-8.23519'

= 1.0340929 + j0.3632368
= 1.0960333 119.354398" = 1.0960 lo.337l tad I

El = I.0 l0' (slack bus)

E4 - Q.0I2r + j0.1271) + 2 .1 -  j 0 .31  r x 0.1 l9O"
r .021-  7 .15811 '

= 1.0166979 + j0.335177 = 1.0705 lI8'2459"

- 1.071 10.31845 rad

The loads at buses 4 and 5 are represented by the admittances calculated as

follows:

yr r.= 
''9 

.!.:,0! (0.9661 - jo.4zsr)6 (1.0174)"



;;'#;;"J###::
il::H,:T:|, :::,::::^'l:,::,1,:nt reactanles of the machines we wlr,we wlll,therefore' now designate as buses 2 and3, the fictitious internal nodes betweenthe internal voltages and the transient reactances of the machines. Thus we get

Y-^ =- 2 2 - @ = - i r r . 2 3 6

Yzq= j11.236 = yqz

Ytt =

io'04+io] 
= - i7'143

Yzs = j7.I43 = yst

Y u =  Y t q +  y q t *  y q s +
* Yzq

= 0.9660877 - j0.4250785 + 4.245 - j24.2571 + 1.4488 _
i8 .8538+ j0 .041  + rO.113_  j r t .235g

_ 6.6598977 _ j44.6179

Yss=  Yrs*  Ysq*  Ysr *  9 *  
Ur ,  

*  r " ,
2  2  

'  ' 35
- 0.4889 - j0.1565 + r.4488 - j8.8538 + 7.039r _ j41.335+ /O.1 13 + j0.098 _ j7.t42}
_ 8.97695s _ js7.297202

The complete augmented prefault lzuu, matrix is show n.iri'Table 12.1.
Table 12.T The augmented prefaurt bus admittance matrix for Ex. 12.11,admittances in pu

I a,grr,Power System Stability _ .

During Fault Bus Matrix

Since the fault is near bus 4, it must be short circuited to ground. The Ynus
during the fault conditions would, therefore, be obtained by deleting 4th row
and 4th column from the above augmented prefault Y".r. rnatrix. Reduced fault
matrix (to the generator internal nodes) is obtained by eliminating the new 4th
row and column (node 5) using the relationship

Y*iqn"*1 = Y*j@tat - Y t n(oltt) 
ynj(old 

)/ Y rn @ta)

The reduced faulted matrix ()'eus during fault) (3 x 3) is given in Table I2.8,
which clearly depicts that bus 2 decouples from the other buses during the fault
and that bus 3 is directly connected to bus 1, showing that the fault at bus 4
reduces to zero the power pumped into the system from the generator at bus 2
and renders the second generator at bus 3 to -eive its power radially to bus 1.

Table 12.8 Elements of Yrus (during fault) and Ysus (post fault)
for Ex. 12.11, admittances in pu.

Reduced during fault Yu^

Bus

v 0.5 _ j0 .16

prefaulr 
"r" 

*Trl rr.off 
(0'488e - i0'1s647)

Load admittances, al

Bo, Bo,'
) )

L

I
2
a
J

s.7986-j35.6301
0

-  0 .0681+ 75.1661

0
- jrr.236

0

-  0 .0681 +  j5 .166 l
0

0.1362'- j6.2737

Reduced post Jault Yurt

I
2
-
J

r.3932 - jr3.873r
- 0.2214 + j7.6289
- 0.0901 + j6.0975

- 0.2214 + j7.6289 - 0.0901 + j6.O975
0.s - j7.7898 0

0  0 .1591 -  j6 .1168

B u s

Post Fault Bus Matrix

Once the fault is cleared by removing the line, simultaneously opening the
circuit breakers at the either ends of the line between buses 4 and 5, the prefault
Y"u5 has to be modified again. This is done by substituting Yqs = Ysq - 0 and
subtracting the series admittance of line 4-5 and the capacitive susceptance of
half the line from elements Yoo and Ytt.

Y++lporrfault) = Y++(prefault) - Yqs- 84512

= 6.65989 -  j44.6179 -  1.448 + 78.853 -  j0.113

= 5.2III - j35.8771

Similarly, Ysr(oo*, rault) = 7.528I - i48.5563

The reduced post fault Y"u5 is shown in the lower half to Table 12.8. It may
be noted that 0 element appears in 2nd and 3rd rorvs. This shows that,

2
3
4

rr.284_j6s.473 0

0
- j7.1428

0

0 + j7.1428

4.245 + j24.257

j11.23s9

0
6.6598_j44.617

-1.4488 + j8.8538

0 _i1r.23sg

0 6
-4.245 + j24.257 jl l  .2359

-7.039 + j41.355 0

-7.039 +
j4 r .35s

0
j7.t428
-1.4488
+j8.8538
8.9769

+ j57.2972



{92 | Modern power System Anatysis

- L . . ^ : ^ ^ l r - .  r r -  -
lrrryr'ruarry' tlle generarors I an0 Z are not Interconnected when line 4-5 is
removed.

During Fault Power Angle Equation

P r z =  0

P,3= Re [YrrEr,El* * El* \F(];  since yy= 0
= E{2 Gn + lEi l  lEi l  l rr , l  cos (6zr _ Lzt)
= (1.071)2 (0.  1362)  + I  x  1.071x 5.1665 cos (d3 _ 90.755")

P"3 = 0.1561 + 5.531 s in (h -  0 .755)

Postfault Power Angle Equations

p"z= lE/P G22 + lElt lEll ly2Ll cos (dr, _ 0zr)
= 1.0962 x 0.5005 + I x 1.096 x 7.6321 cos ({ - 9I.662")
= 0.6012 + 8.365 sin (d, _ I.662)

p,3 = tE{ 2q3 + Ell tElt t\l cos ( 6r, _ 0rr)
- 7.0712 x 0.1591 + 1 x 1.07r x 6.09g cos (dr - 90.g466")
= 0.1823 + 6.5282 sin (d, _ 0.9466")

Swing Equations-During Fault

Power System Stanitity I 491,1

It rnay be noted that in the above swing equations, P,, ntay be written in

general as follows:

Pn= Pr, - Pr. - P,r,n* sin (6- 7)

Solution of Swing Equation

The above swing equations (during fault followed by post fault) can be solved

by the poinrby-point method presented earlier or by the Euler's method

presented in the later part of this section. The plots of E and 4 are given in

Fig. 12.42 for a clearing time of 0.21 5 s and in Fig. 12.43 for a clearing time

of 0.08 s. For the case (i), the machine 2 is unstable, while the machine 3 is

stable but it oscillates wherein the oscillations are expected to decay if effect

of damper winding is considered. For the case (ii), both machines are stable but

the machine 2 has large angular swings.

(0.275s fault  cleared at)

F\g.12.42 Swing curves for machines 2 and 3 of Example 12.1 for

clearing at 0.275 s.

If the fault is a transient one and the line is reclosed, power angle and swing

equations are needed for the period after reclosure. These can be computed from

the reduced Ysus matrix after line reclosure.

#=ff  (P^z-P,z)=

= t:9/ 
e.2s - o) elecr deg/sz

1 2

d ,q  _  180  f
a ' r =  k  

( P n - P " t )

= t * : /  
e . r  -  {0 .1s61 + 5.531 s in (6t  -0 .7ss)} l

9

= 
Y 

l .g43g - 5.531 sin (d, - 0.755")l  elect d,eg/sz

Swing Equations-Postfault

#={ f  
p .2s-10.60r  z  + 8.365 s in (d)  -  t .662") }J  erect  deg/s2

dtd, 180 f-* =*12.10-{0.1823 + 6.5282 sin(d3 _ 0.g466.)}lelect deg/szdt'  9

Machine 1 is reference (lnfinite bus)
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500
Machine 1 is reference (lnfinite bus)

Machine 2

i l l t l
_ L _ _  I  _  |  _
0 .8  0 .9  1 .0

Fault cleared
after 4 cycles

Fig. 12.43 Swing curves for machines 2 and 3 of
Example 12.11 for clearing at 0.0g s

Gonsideration of Automatic voltage Regulator (AVR) and
Speed Governor Loops

state variable Formulation of swing Equations

The swing equation for the hh generator is

Power System Stabilitv 
l,,4PFr

.  i *=  #(P"or -  Pco) ,  k  =  1 ,2 ,  . . . ,  m
r7.2

Initial state vector (upon occurrence of fault) is

xoLk= fr= lEot

(t2.74)

(Eo*) using
rotor angle

1 0 0

at)
c)
o
L

q,
o)

!

o
(t
c

x " z k =  0

The state form of swing equations (Eq. (12.74)) can be solved by the many

available integration algorithms (modified Euler's method is a convenient

choice).

Computational Algorithm for Obtaining Swing Currzes Using

Modified Euler's Method

l. Carry out a load flow studY

voltages and powers.

(prior to disturbance) using specified

2. Compute voltage behind transient reactances of generators

Eq. (9.31). This fixes generator. emf magnitudes and init ial

lreference slack bus voltag" Y?).

Compute, Ysu5 (during fault, post fault, line reclosed).

Set time count r = 0.

Compute generator power outputs using appropriatg ts"us with the help

of the geniral form of Eq. (12.27). This givet Pg},for / 1 /').

Note: After the occurrence of the fault, the period is divided into uniform

discrete time intervals (At) so that t ime is counted as /(0), t(l), ...... A

typical value ol' l t is 0.05 s.

a
J .

4.
5 .

6. Compute t( i [ ; ' } , i \7'  ) ,k

7. Corttputc thc I ' i ls l  stutc

- -  1 ,2 ,  . . . ,  m l  f iom Eqs.  (12 .74) .

cst i r r t i r lc 's l iu '  t  = , { t+ l )  'prr

(r2.73)

For the multimachine case, it is more convenient to organise Eq. (12.73) is
state variable form. Define

x r k =  6 r =  l E * '

xz*=  6 t

i  t * =  x z t

+ =  + (p 'oo-  p " ) ;  k  -  r ,2 ,  . . . ,  f f i
d t '  H k '  

u

, [ , 0 * r ,  =  , t l o  + i [ , 0 )  a t  
I  =  |  . 2 .  . . . .  r r t

,ff') - *V) + *$'o) At

8. Cortrpute the first estimates of E^('+t)

BQ+D = E? lcos x,(i*r)+ 7 sin *\lf '))

g. Compute P8;'); (appropriate Y"u5 and Eq. (12.72))'

10. compute [t ;{ in') , i t :o*t ' ) ,  k = r,2, . . . ,  mf fromEqs. (12.74).

1 1. Compute the average values of state derivatives

i[ i ,)  ,  urr= ][ iu,cl  +; l [*t) ]
k = 1 , 2 , . . . , f f i

iL'),*, = *I*\:| + ,tt'i" l
Then



1 ' t  ALL. Lompute tne lrnal state estimates for | = t\r+t)-

*;Iu" = *([) + ill) uus, at

,&*r) - ,([l + if).^,rat 
k = 7'2' "'' frt

Compute the final estimate for Eo at t = r('*l) using

BQ+t) = l4llcos xf;+r) + 7 sin *f1r)

14. Print (",9*t), *;:o*D ); k = I,2, ..., m
15. Test for time limit (time for which swing curve is to be plotted), i.e.,

checki f  r> rnnur.  I f  not ,  r -  r+ r  and repeat f romstep5 above.
Otherwise print results and stop.

The swing curves of all the machines are plotted. If the rotor angle of a
machine (or a group of machines) with r"rp".t to other machines increases
without bound, such a machine (or grouf of machines) is unstable and
eventually falls out of step.

The computational algorithm given above can be easily modified to include
simulation of voltage regulator, field excitation response, saturation of flux
paths and governor action

Stability Study of Large Systems

To limit the computer memory and the time requirements and for the sake of
computational efficiency, a large multi-machine system is divided into a study
subsystem and an external system. The study subsystem is modelled in detail
whereas approximate modelling is carried out for the external subsystem. The
total study is rendered by ihe modern technique of dynamic equivalencing. In
the external subsysteln, nutnber <lf rnachines is drastically recluced using various
methods-coherency based rnethods being most popurar and widely used by
vanous power ut i l i t ies in the wor ld.

I2.T7 SOME FACTORS AFFECTING TRANSIENT STABILITY

We have seen in this chapter that the two-machine system can be equivalently
reduced to a single machine connected to infinite bus bar. The qualitative
conclusions regarding system stability drawn from a two-machine or an
equivalent one-machine infinite bus system can be easily extended to a
multimachine system. In the last article we have studied ihe algorithm for
determining the stability of a multimachrne system.

It has been seen that transient stability is greatly affected by the type and
location of a fault, so that a power system analyst must at the very outset of a
stability study decide on these two factors. In ou, 

"*u-ples 
we have selected

a 3-phase fault which is generally more severe from point of view of power
transfer' Given the type of fault and its location let us now consider other

Power System Stabitity 
| 
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factors which affect transient stability and therefrom draw th" .on"llsions,
regarding methods of improving the transient stability lirnit of a system and
making it as close to the steady state limit as possible.

For the case of one machine connected to infinite bus, it is easily seen from

the angle through which it swings in a given time interval offering thereby a
method of improving stability but this cannot be employed in practice because
of economic reasons and for the reason of slowing down the response of the
speed governor loop (which can even become oscillatory) apart from an
excessive rotor weight.

With reference to Fig. 12.30, it is easily seen that for a given clearing angle,
the accelerating area decreases but the decelerating area increases as the
maximum power limit of the various power angle curves is raised, thereby
adding to the transient stability limit of the system. The maximum steady power
of a system can be increased by raising the voltage profile of the system and
by reducing the transfer reactance. These conclusions along with the various
transient stability cases studied, suggest the following method of improving the
transient stability limit of a power system.

1. Increase of system voltages, use of AVR.
2. Use of high speed excitation systems.

3. Reduction in system transf-er reactance.

4. Use of high speed reclosing breakers (see Fig. 12.32). Mo&rn tendency
is to employ single-pole operation of reclosing circuit breakers.

When a fault takes place on a system, the voltages at all buses are reduced.
At generator terminals, these are sensed by the automatic voltage regulators
which help restore generator terminal voltages by acting within the excitation
system. Modern exciter systems having solid state controls quickly respond to
bus voltage reduction and can achieve from one-half to one and one-h'alf cycles
(l/2-l]) gain in crit ical clearing times fbr three-phase taults on the HT bus
of the generator transformer.

Reducing transfer reactance is another important practical method of
increasing stability limit. Incidentally this also raises system voltage profile.
The reactance of a transmission line can be decreased (i) by reducing the
conductor spacing, and (ii) by increasing conductor diameter (see Eq. (2.37)).
Usually, however, the conductor spacing is controlled by other features such as
lightning protection and minimum clearance to prevent the arc from one phase
moving to another phase. The conductor diameter can be increased by using
material of low conductivity or by hollow cores. However, norrnally, the
conductor configuration is fixed by economic considerations quite apart from
stability. The use of bundled conductors is, of course, an effective means of
reducing series reactance.

Compensation for line reactance by series capacitors is an effective and
economical method of increasing stability limit specially for transmission
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distances of more than 350 km. The ciegree of series compensation, however,
accentuates the problems of protective relaying, normal voltage profiles, and
overvoltages drrring line-to-ground faults. Series cornpensation becomes more
effective and economical if part of it is
of compensation upon the occurrence c
S witehed series eapaeitors simultaneot
and raise the transient stability limit tc
limit. Switching shunt capaciiors on ol
stability limits (see Example 12.2) but the MVA rating of shunt capacitors
required is three to six times the rating of switched series capacitors for the
same increase in stability limit. Thus series capacitors are preferred unless
shunt elements are required for olher pu{poses, siy, control of voltage profile.

Increasing the number of parallel lines between transmission points is quite
often used to reduce transfer reactance. It adds at the same time to reliability
of the transmission system. Aclditional line circuits are not likely to prove
economical unit I aftet all feasible improvements have been carried out in the
first two circuits.

As the majority of faults are transient rn nature, rapid switching and isolation
of unhealthy lines followed by reclosing has been shown earliei to be a great
help in improving the stability marginr. ih. modern circuit breaker technology
has now made it possible fbr line clearing to be done as fast as in two cycles.
Further, a great majority of transient faults a'e line-to-ground in nature. It is
natural that methods have been developed for selective single pole opening and
reclosing which further aid the stability limits. With ,"f"r".,"" to Fi;. lz.r7, if
a transient LG fault is assumed to occur on the generator bus, it is immedi ately

::.1,:l_., 
ol,lnt the fault there will now be a definite amount of power rransfer,

n d  d r + + ^ s ^ ^ L  L - - - -ab uurereni rrom zero power transfer for the case of a three-phase fault. Also
when the circuit breaker pole corresponding to the faulty line is opened, the
other two lines (healthy ones) remain intact so that considlrable power transfer
continues to take place via these lines in comparison to the case of three-pole
switching when the power transfer on fault clearing will be reduced to zero. It
is, therelbre, easy to see why the single pole swiiching and reclosing aids in
stability problem and is widely adopted. These facts arelilustrated by means of
Example 12'12. Even when the stability margins are sufficient, single pole
switching is adopted to prevent large swings and consequent vortage dips.
Single pole switching and reclosing is, of course, expensiu. in t..*s of relaying
and introduces the as.socjatec! problerns of overvoltages caused by single pole
opening owing to line capacitances. Methods are available to nullify these
capacitive coupling effects.

Recent Trends

Recent trends in design of large alternators tend towards lower short circuit
ratio (scR = r/x), which is achieved by reducing machine air gap withconsequent savings in machine mmf, size, weight and cost. Reduction in the

I
I  : . - ^ I r  .
I.1.':/tlltt, i::

stze of rotor reduces inertia constant, Iowering thereby the stability margin. The
loss in stability margin is made up by such features as lower reactance lines,
faster circuit breakers and faster cxcitation systenrs as tliscussetl alreacly, and
a faster system valving to be discussed later in this article.

A stage has now been reached in technology whereby the methods of
irnprovinE=stability; discussetl above, have been pushed to their limits, e.g.,
clearing times of circuit breakers have been brought down to virnrally
irreducible values of the order of two cycles. With the trend to reduce machine
inertias there is a constant need to determine availability, feasibility and
applicability of new methods for maintaining and/or improving system stability.
A brief account of some of the recent methods of maintaining stability is given
below:

HVDC Links

Increased use of HVDC links ernploying thyristors would alleviate stability
problems. A dc link is asynchronous, i.e., the two ac system at either end do
not have to be controlled in phase or even be at exactly the same frequency as
they do for an ac link, and the power transmitted can be readily controlled.
There is no risk of a fault in one system causing loss of stability in the other
system.

Breakingr Resistors

For improving stability where clearing is delayed or a large tn)a i, suddenly
lost, a resistive load called a breaking resistor is connected at or near the
generator bus. This load compensates for at least sonre of the reduction of load
on the generators and so reduces the acceleration. During a f-ault, the resistors
are applied to the terminals of the generators through circuit breakers by means
of an elaborate control scheme. The control scheme determines the amount of
resistance to be applied and its duration. The breaking resistors remain on for
a matter of cycles b<lth during fault clearing and after system voltage is
restored.

Short Circuit Current Limiters

These are generally used to limit the short circuit duty of distribution lines.
These may also be used in long transmission lines to modify favourably the
transfer impedance during fault conditions so that the voltage profile of the
system is somewhat improved, thereby raising the system load level durins the
fault.

Turbine Fast Valuing or Bypass Valuing

The two methods just discussed above are an attempt at replacing the sysrem
load so as to increase the electrical output of the generator during fault
conditions. Another recent method of improving the stability of a unit is to
decrease the mechanical input power to the turbine. This can be accornplished



by rneans of fast valving. where the differenee between mechanical input and
reduced electrical output of a generator under a fault, as sensed by a control
scheme, initiates the closing of a turbine valve to reduce the power input.
Briefly, during a fast valving operation, the interceptor valves are rapidly shut
(in 0.1 to 0.2 sec) and immediately reopened. This procedure increases the
critical switching time lons enoush
stable for faults with stuck-breaker clearing times. The scheme has been put to
use in some stations in the USA.

FUII Load Rejection Technique

Fast valving combined with high-speed clearing time will suffice to maintain
stability in most of the cases. However, there are still situations where stabilitv
is difficult to maintain. In such cases, the normal procedure is to automatically
trip the unit off the line. This, however, causes several hours of delay before
the unit can be put back into operation. The loss of a major unit for this length
of tirne can seriously jeopardize the remaining system.

To remedy these situations, a full load rejection scheme could be utilized
after the unit is separated from the system. To do this, the unit has to be
equipped with a large steam bypass system. After the system has recovered
from the shock caused by the fault, the unit could be resynchronized and
reloaded. The main disadvantage of this method is the extra cost of a large
bypass system.

The systetn shown in Fig. 12.44 is loaded to I pu. Calculate the swing curve
and ascertain systern stability for:

(i) LG fault three pole switching followecl hy reclosure. l inc louncl healthy.
(ii) LG fault single pole switching fbllowed by reclosure, line found healthy.

Switching occurs at 3.75 cycles (0.075 sec) and reclosure occllrs at 16.25
cycles (0.325 sec). All values shown in the figure are in pu. -
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(b) Negative sequence network

Fig. 12.45

For an LG fault at P the sequence networks will be connected in series-as
shown in Fig. 12.46. A star-delta transformation reduces Fig. 12.38 to that of
Fig. 12.47 from which we have the transfer reactance

Xr2(LG faulQ = 0.4 + 0.4 + nOII' 'O = 1.45
0.246

I

I
.- t .

lE l=1 '2  (  )
I

r - r d  60
0 '4

Fig.12.46 Connection of sequence networks for an LG fault

f-
( , r

Fig.12.47 Transfer impedance for an LG fault

When the circuit breaker poles corresponding to the faulted line are opened
(it corresponds to a single-line open fault) the connection of sequence networks
is shciwn in Fig. 12.48. From the reduced network of Fig. 12.49 the rransfer
reactance with faulted line switched off is

t  T 
- t  

I  
- t -

; . i ) l _ C
ao 

'' l]o t go '' | 
= 

l xo = 0.0e15
|  |  p  1 ' o  |  |  IL----.-' I i-rT60 t;,'r";*u1n"" 

networl

P o'4

H = 4.167 - ' .
Xr = o 3Oj ?*f -h'Ir-!.&-f!
X t = 0 ' 1 5  ' L  ( /

xo= o.t AY-l

Fig. 12.44

Solution The sequence networks of the system are drawn and suitably reduced
in Figs. I2.45a, b and c.

I  l '  Xn 
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tI  r / - f t r f \ r  _ _ _ J
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Under healthy conditions transfer reactance is easily obtained from the
positive sequence network of Fig. 12.45 a as

Xrr(line healthy) = 0.8

Zero sequence

Flg.12-48 Connection of sequence networks with faulted line switched off

lEl=1'z lv l  =1 'o

Fig. 12.49 Reduced network of Fig. 12.49 giving transfer reactance

I .o.ro

Pettt = 0

Now

PrN= Pd = 1.5 sin d

46,- A6n-, + @LP^,- ,,
M  

' a ( n - l )

H = 4.167 MJA{VAo '1  P

1,1= JU- - 4.63 x 10a sec2lelectrical degree
180 x  50

Taking At = 0.05 sec

(at)'
5.4

4.63xI0-4

Time when single/three pole switching occurs

= 0.075 sec (during middle of At) .,
Time when reclosing occurs = 0.325 (during middle of at)

Table 12.9 swing curye calculation-three pole switchingPower angle eguations

PreJault 

p,= rE vr sin d=
X, ,

Initial load = 1.0 pu

Initial torque angle is given by

or

During fault

1 = 1.5 sin 5o

6o = 47.8"

7.2x1-  S l I l  d =  l . )  s t n  b
0.8

L

sec

P,u,o P,,
(pu))

1.5 0.667
0.827 0.667

0.827 0.682

0.0 0.726
0.0
0.0
0.0
0.0

1.5 0.565
1.5 0.052
1.5  -  0 .55
1.5 -  0.984
1.5  -  0 .651
r .5  0 .497

.5.4P,, ifi
elec deg elec deg

6 P "
(pu)

6
elec deg

0.075---+
0 . 1 0
0 . 1 5
0.20
o.25
0.30

0.325--+
0.3s
0.40
0.45
0.50
0.s5
0.60
0.65

r .0  0 .0
0.552 0.448

0.224
0.564 0.436

0.0  1 .0
0 .0  1 .0
0 .0  1 .0
0 .0  1 .0
0 .0  1 .0

0 .85  0 .15
0.078 0.922

- 0.827 r.827
- r .48 2.48
-  0 .98  1 .98

0.146 0.254

4 1 . 8
4 1 . 8

1 . 2  4 1 . 8
3.6 43.0

9.0 46.6
r4.4 55.6
19.8 70.0
2s.2 89.8
30.6  I  15 .0

31.4
36.4
46.3
59.7
10.4
7 1 . 8

0
o*
ouu,
0.05

1.2
N A

F  l . Z x l'",, = 
lff 

sin d = 0.827 sin

I)uring single pole switching

Perrr = 
+# 

sin d = 0.985 sin

5.4
5.4
5.4
5.4
5.4

0.8
5.0
9.9

13.4
10.7
t . 4

r45.6
177.O
2r3 .4
259.7
3r9.4
389.8
461.6

Negative sequence

P P/ o:4

The swing curve is plotted in Fig. 12.50 from which it is obvious that rhe
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0.40 l .s  0.998 1.5 -  0 .5 -  2 .7
0 .45  1 .5  1 .0  1 .5  -  0 .5  -  2 .7
0 .50  1 .5  1 .0  1 .5  -  0 .s  -  2 .7  -  2 .6  89 .5
0.55 1.5 0.9985 1.5 -  0 .5 -2.7 86.9

2.8 86.6
0 .1  89 .4

r  I  , r  l - - , r -  r  ] . . . r  r
o ' 5  1 . 0

Time (sec)

Fig. 12.50 swing curue for three pole switching with reclosure

Table 12.10 swing curve calculation-single pole switching

-  10 .3  73 .7
- 12.r 63.4
-  1 3 . 0  5 1 . 3
-  12 .6  38 .3
- 10.7 25.7
-  7.4 15.0
-  3 . r  7 . 6

1.7 4.5
6.2 6.2
9.9 r2.4

12.2 22.3
l3 . l  34 .5
12.5 47.6
10.9 60.1
8 .6  7  r .O
6.0 79.6
3 .3  \  95 .6
'  gg .g

The swing curve is plotted in Fig. 12.51from which it follows that the sysrem
is stable.

Single pole switch off

/'/ ' Reclosure (fault cleared)| ' /

i -  l - - r

0 5
Time (sec)

Fig. 12.51 Swing curve for single pole switching with reclosure
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MACHINE UNSTABLE

0 .65  1 .5
0 .70  1 .5
0 .75  1 .5
0.80 1.5
0.85 1.5
0.90 1.5
0.95 1.5
1 .00  1 .5
r  .05 r .5
1 . 1 0  1 . 5
1 . 1 5  1 . 5
1 .20  1 .5
r .25  1 .5
1 .30  1 .5
1 .35  1 .5
r .40 1.5
1 .45  1 .5
1 .50  1 .5

0.96 t.44 - 0.44 - 2.4
0 . 8 9 4  1 . 3 4  - 0 . 3 4  - 1 . 8
0 . 7 8 1  t . l 1  -  0 . 1 7  -  0 . 9
0.62 0.932 0.068 0.4'
0.433 0.6s 0.35 r .9
0.2s9 0.39 0.61 3.3
0 .133  0 .2  0 .8  4 .3
0 .079  0 .119  0 .881  4 .8
0 .107  0 .161  0 .839  4 .5
0.214 0.322 0.678 3.7
0.38 0.57 0.43 2.3
0.566 0.84 0.  16 0.9
0 . 7 3 8  1 . 1 1  -  0 . 1 1  -  0 . 6
0.867 1.3 -  0 .3 -  1 .6
0.946 t.42 - 0.42 - 2.3
0.983 1.48 -  0 .48 -  2 .6
0.997 1.5 - 0.s - 2.7

1 5 0

100

I

SEC

I',uu^

(pu)
,s:itt h

BO

60

A

I
I
I

o)
o
o)
o)

o
C)
L

o
o
o)

ra

t,,,
(pu)

l'r, 5'4P,,
(pu) elec deg

A b
elec deg

b
elec deg

0
o ,

f

oory

0.05
0.075---

0 . 1 0
0 . 1 5
o.20
o.25
0.30

4325---+
0.35

1 .5  0 .661  1 .0
0.827 0.667 0.s52

0.827 0.682 0.s64

0.0
0.448
0.224 1.2
0.436 2.4

0.285 1.5
0.230 r.2
0 .166  0 .9
0.107 0.6
0.060 0.3

0.485 - 2.6

4  t . 8 0
4 1 . 8

r .2 41.8
3.6 43.0

5.1 46.6
6.3 5r .7
7.2 58.0
1.8 65.2
8 .1  73 .0

5 . 5  8 1 . 1
(Contd... .)

0.98s 0.726
0.98s 0.784
0.985 0.848
0.98s 0.908
0.985 0.956

1 .5  0 .988

0 .7Ls
0.77
0.834
0.893
0.940

1 .485

MACHINE STABLE
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PROB TEIlIS

A two-pole, 50 Hz, 11 kv turboalternator has a rating of 100 Mw,
powel factor 0.85 lagging. The rotor has a moment of inertia of a 10,000

12.2 Two turboalternators with ratings given below are interconnected via a
short transmission line.
Machine 1: 4 poIe, 50 Hz, 60 MW, power factor 0.g0

moment of inertia 30,000 kg-rn,
lagging,

Machine 2 pole, 50 Hz, 80 MW, power factor 0.85 lagging,
moment of inertia 10,000 kg--'

Calculate the inertia constant of the single equivalent machine on a base
of 200 MVA.

Power station t has four identical generator sets each rated g0 MVA and
each having an inertia constant 7 MJA4VA; while power station 2 has
three sets each rated 200 MVA, 3 MJA4VA. The stations are locatld
close together to be regarded as a single equivalent machine for stability
studies. Calculate the inertia constant of the equivalent machine on 100
MVA base.

A 50 Hz transmission l ine 500 km long with constants given below ties
up two large power areas

I ina

from its prefault position, determine the maximum load that could be
transferred without loss of stability.

I2.8 A synchronous generator is feeding 250 MW to a large 5O Hz network
over a double circuit transmission line. The maximum steady state Dower
that can be transmitted over the line with both circuits in operation is
500 MW and is 350 MW with any one of the circuits.
A solid three-phase fault occurring at the network-end of one of the lines
causes it to trip. Estimate the critical clearing angle in which the circuit
breakers must trip so that synchronism is not lost.
What further information is needed to estimate the critical clearing time?

12.9 A synchronous generator represented by a voltage source of 1.05 pu in
series with a transient reactance of 70.15 pu and in inertia constant F/ =
4.0 sec, is connected to an infinite inertia system through a transmission
line. The line has a series reactance of70.30 pu, while the infinite inertia
system is represented by a voltage source of 1.0 pu in series with a
transient reactance of 70.20 pu.

The generator is transmitting an acti're power of 1.0 pu when a three-
phase fault occurs at its terminals. If the fault is cleared in 100 millisec,
determine if the system will remain stable by calculating the swing
curve.

12.10 For Problem 12.9 find the critical clearing time from the swin! currre for
a sustained fault.

l2. l l  A synchrt)nous generator representcd by a vol tage of  l . l5 pu in ser ies
with a transient reactance is c<lnnected to a large power system with
vol t t tgc 1.0 pu throt lgh l  powcr rrc lwork.  Thc cquivalcnt  t larrs ient
transf'er reactance X between voltage sources is 70.50 pu.
After the occurrence of a three-phase to grouncl fault on one of the l ines
of the power network, two of the line circuit breakers A and B operate
sequentially as follows with corresponding transient transfer reactance
given therein.
(i) Short circuit occurs at 6 = 30", A opens instantaneously to make X

= 3.0 pu.
(ii) At 6 = 60o, A recloses, X = 6.0 pu.

(i i i) At 5=75o, A reopens.
(iv) At d = 90o, B also opens to clear the fault making X = 0.60 pu
Check if the systenr wil l operate stably.

12.12 A 50 Hz synchronous generator with inertia constant H = 2.5 sec and
a transient reactance of 0,20 pu feeds 0.80 pu active power into an
infinite bus (voltage I pu) at 0.8 lagging power lactor via a network with
an equivalent reactance of 0.25 pu.

A three-phase fault is sustained for 150 millisec across generator
terminals. Determine through swing curye calculation the torqu e angle 6,
250 millisec, after fault initiation.

F i  n d  t h e  s f c : t r l v  s l z f e  c f e h i l i t r r  l i m i t  i f  l l , /  |  -  l l /  |  -  t n l l  t , \ /  / . . ^ - ^ + ^ - + r, . - - ' . , , J  r r r J  r r r r r r r  , ,  , r , t t  _  |  v  
R t  

_  , \ r v  A  V  \ L t , | t : l t d l l l r .

What will the steady state stability limit be if line capacitance is also
neglected? What will the steady state stability limit be if line resistance
is also negloctcd' /  Cornnrcl t t  on t l rc rcsul ts.
A power deficient area receives 50 MW over a tie line from another
area. The maximum steady state capacity of the tie line is 100 MW. Find
the allowable sudden load that can be switched on without loss of
stability.

A synchronous motor is drawin g 30vo of the maximum steady state
power from an infinite bus bar. If the load on motor is suddenly
increased by 100 per cent, would the synchronism be lost? If not, what
is the maximum excursion of torque angle about the new steady state
r<ltor position.

The transfer reactances between a generator and an infinite bus bar
oper i l t ing i r f  200 kV trnder var ious condi t ions on fhe interconnector aro:

R = 0.11 f) /km

C = 0.009 lFlkm

Pretault

During fault

Postfhult

L - 1.45 mH/km
G = 0

S0 0 per phase

m O per phase

2ffi {) per phase



12.13 A 50 Hz, 500 MVA,400 kV generator (with transformer) is connected
to a 400 kV infinite bus bar through an interconnector. The generator
has F1 - 2.5 MJA4VA, voltage behind transient reactance of 450 kV and
is loaded 460 MW. The transfer reactances between generator and bus
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During fault

Postfault

1 .0  pu
0.75 pu

Calculate the swing curve using intervals of 0.05 sec and assuming that
the fault,is cleared at 0.15 sec.

I2.I4 Plot swing curves and check system stability for the fault shown on the
system of Example 12.10 for fault clearing by simultaneous opening of
breakers at the ends of the faulted line at three cycles and eight cycles
after the fault occurs. Also plot the swing curye over a period of 0.6 sec
if the fault is sustained. For the generator assume H = 3.5 pu, G = 1 pu
and carry out the computations in per unit.

12.15 Solve Example 12.10 for a LLG fault.

REFERE N CES

Books

1 Stevenson, W.D., Elements of Power System Analysis,
New York, 1982.

Elgerd, O.I., Electic Energy Systems Theory: An
McGraw-Hill, New York, 1982.

4th edn., McGraw-Hill,

iniroduciion, 2nd edn.,

The Iowa3. Anderson, P.M. and A.A. Fund, Power System Control and Stability,
State University Press, Ames, Iowa, 1977.

4. stagg, G.w. and A.H. o-Abiad, computer Methods in Power system Analysis,
Chaps 9 and 10, McGraw-Hil l  Book Co., New York, 1968.

5. Crary, S.8., Power System Stability, Vol. I (Steady State Stability), Vol. II
(Transient Stability), Wiley, New York, 1945-1947.
Kimbark, E.W., Power System Stability, Vols 1, 2 and 3, Wiley, New york, 1948,
Veuikorz, Y.A., Transient Phenomena in Electrical Power System (translated from
the Russian), Mir Publishers, Moscow, 1971.

8. Byerly, R.T. and E.w. Kimbark (Eds.), stability of l^arge Electric power

Systems, IEEE Press, New York, 1974.
9. Neuenswander, J.R., Modern Power Systems,International Text Book Co., 1971.

t0. Pai, M.A., Power System Stability Annlysis by the Direct Method of Lyapunov.,
North-Holland, System and Control Services, Vol. 3, 1981.

I 1. Fouad, A.A and V. Vittal, Power System Transient Stability Analysis using the
Transient Energy Function Method, Prentice-Hall, New Jersy, 1992.

20.

2 r .

22.

23.

. A
L + .

25.
6.

7 .


