
ABSORPTION OF LIGHT BY ORGANIC MOLECULES:
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The spectrum shows that many vibronic transitions are allowed, and

that some are more probable than others; that is, the intensities of the

different vibronic transitions vary. In the absorption spectrum of

anthracene, the v = 0 → v = 0 transition gives rise to the most intense

absorption band because for this transition the overlap of the

vibrational probability functions for S0(v = 0) and S1(v = 0) is greatest;

that is, the Franck –Condon factor for this transition is greatest. The v

= 0 → v = 0 transition gives rise to the 0 –0 band.
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The absorption spectra of rigid hydrocarbons in nonpolar solvents may show

vibrational fine structure, but absorption spectra of other organic molecules in

solution tend to be broad, featureless bands with little or no vibrational

structure (Figure). This is due to the very large number of vibrational levels in

organic molecules and to blurring of any fine structure due to interaction

between organic molecules and solvent molecules. The hypothetical spectrum

shown in Figure shows the vibrational structure hidden by the enveloping

absorption spectrum, and the peak of the absorption curve does not correspond

to the 0–0 band because the most probable vibronic transition here is the 0 → 4

transition.
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In principle, six types of electronic transition, designated σ → σ*, σ → π*,

π → π*, π → σ*, n → σ* and n → π*. The σ → σ* transitions correspond

to absorption in the inaccessible far-ultraviolet (the shortest wavelengths

of radiation in the ultraviolet spectrum and especially those between 100

and 300 nanometers), and both σ → π* and π → σ* are obscured by the

much stronger π → π* absorptions. Of the possible electronic transitions,

the ones we shall be most concerned with in molecular organic

photochemistry are the π → π* and n → π* transitions, which produce

(π,π*) and (n,π*) electronically-excited states, respectively.
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SOME SELECTION RULES:

Transitions between energy levels in organic molecules are subject to

certain constraints, referred to as selection rules.

1. Spin selection rule: An electronic transition takes place with no change in the

total electron spin – that is, ΔS = 0 – hence singlet ↔ triplet transitions are

forbidden or very weakly allowed. For example, the S0 → T1 transition in

anthracene has a molar absorption coefficient, εmax, some 108 times less than

that corresponding to the S0 → S1 transition.
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The heavy atom effect can show itself as the internal heavy atom effect,

where incorporation of a heavy atom in a molecule will enhance S0 →

T1 absorption due to spin–orbit coupling. For example, 1-

iodonaphthalene has a much stronger S0 → T1 absorption than 1-

chloronaphthalene.
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The external heavy atom effect shows itself when a heavy atom is

incorporated in a solvent molecule. For example, 1- chloronaphthalene

has a much stronger S0 → T1 absorption in iodoethane solution than in

ethanol.
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2. Orbital symmetry selection rule: According to the quantum theory, the

intensity of absorption by molecules is explained by considering the

wavefunctions of the initial and final states (ψ and ψ*, respectively). An

electronic transition will proceed most rapidly when ψ and ψ* most closely

resemble each other; that is, when the coupling between the initial and fi nal

states is strongest.
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Transitions involving a large change in the region of space the electron

occupies are forbidden. The orbital overlap between the ground state

and excited state should be as large as possible for an allowed

transition. π- and π* -orbitals occupy the same regions of space, so

overlap between them is large. The orbital overlap between n- and π* -

orbitals is very much smaller, as these orbitals lie perpendicular to each

other.
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Types of excitations:
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Absorption in the uv-visible region leads to the excitation of bonding

electrons. Therefore, the absorption peaks can be correlated with the kind

of bond that exists in the species. Hence absorption spectroscopy in

Ultraviolet visible region is valuable for the characterization of functional

groups in organic molecules.
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Theory of Ultraviolet–Visible Absorption:

The UV-Visible spectroscopy principle is based on the absorption of

ultraviolet light or visible light by chemical compounds. To occur a

chemical reaction, the reacting molecules must be activated by acquiring

activation energy.
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In photochemical reactions, the activation energy is obtained by absorption

of radiation or light energy. In order to study the mechanism of the

photochemical reaction, we need to study the following types of electronic

transition:

Sigma to sigma star transition (σ → σ∗)

n to sigma star transition (n → σ∗)

n to pi star transition (n → π∗)

Pi to pi star transition (π → π∗)
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However, the order may sometimes be altered in some solvents.

More conjugation in a molecule, the more the absorption is displaced

towards higher wavelengths.
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Absorption peaks (λmax) and molar absorptivity (∈max) and possible electronic

transition of some common compounds are given below the table:
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It is possible for excited electrons in atoms and molecules to have some

other kind of interaction which lowers their energy before they can make

a downward transition. In that case they would emit a photon of lower

energy and longer wavelength. This process is called fluorescence if it

happens essentially instantaneously. It is also possible that material can

hold onto the energy of excitation for a long time, gradually making

downward transitions with emission. This delayed emission is called

phosphorescence.
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Fluorescence:

Fluorescence, a type of luminescence, occurs in gas, liquid or solid chemical

systems. Fluorescence is brought about by absorption of photons in the

singlet ground state promoted to a singlet excited state. The spin of the

electron is still paired with the ground state electron, unlike

phosphorescence.
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Phosphorescence:

Phosphorescence is a type of photoluminescence related to fluorescence.

When exposed to light of a shorter wavelength, a phosphorescent substance

will glow, absorbing the light and reemitting it at a longer wavelength.

Unlike fluorescence, a phosphorescent material does not immediately reemit

the radiation it absorbs.
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Jablonski Diagram:

The Jablonski diagram, typically used to illustrate fluorescence

in molecular spectroscopy, demonstrates the excited states of a

molecule along with the radiative and non-radiative transitions

that can occur between them.

Aleksander Jablonski was a Polish academic who devoted his life to the

study of molecular absorbance and emission of light. He developed a

written representation that generally shows a portion of the possible

consequences of applying photons from the visible spectrum of light to a

particular molecule.
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Jablonski Diagram
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• Intersystem crossing (ISC): transition from S1 in ground

vibrational level to T1 state

• IC = 10-14 - 10-10 s, ISC= 10-10 - 10-8 s

• Transitions
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• Radiative transitions: excited molecules emit light and return to

ground state.

• Non radiative transitions: some or all of the energy of the absorbed

photon is ultimately converted to heat by collisions

• spin multiplicity of singlet state = 2S + 1 = 1

• spin multiplicity of triplet state = 2S + 1 = 3

in figure :

hνf = flourescence (10-9 - 10-6 s)

hνp = phosphorescence(10-3 - 103 s )

• Both singlet and triplet give different products.
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Photo‐induced Electron Transfer (ET):
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Photo‐induced Electron Transfer (ET):

Photoinduced electron transfer (PET) is a term reserved to describe the

transfer of an electron between photoexcited and ground-state

molecules. The energetics and dynamics of PET are shown to depend on

the structure of the reactants, the distance separating the reactants, the

nature and polarity of the medium, and Coulombic effects.
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Photoexcitation is the production of an excited state of a quantum

system by photon absorption. The excited state originates from the

interaction between a photon and the quantum system. Photons carry

energy that is determined by the wavelengths of the light that carries

the photons.
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What is the charge separation process?

Charge separation is defined by the process of exciting an electron.

Electrons are excited from lower energy level to higher energy level.

After separation, electrons leave the atom and make the atom positively

charged. So charged particles are created by Charge separation.
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What is meant by Fermi level?

The highest energy level that an electron can occupy at the absolute

zero temperature is known as the Fermi Level. The Fermi level lies

between the valence band and conduction band because at absolute

zero temperature, the electrons are all in the lowest energy state.
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Photo‐induced Electron Transfer (ET): Orbital View
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Electron Transfer is one of the Most Fundamental Chemical Reactions.
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What is Galvanic Cell?

What is Galvanic Cell? An electrochemical cell that converts the chemical

energy of spontaneous redox reactions into electrical energy is known as a

galvanic cell or a voltaic cell. Galvanic cell Voltaic cell is an

electrochemical cell that makes use of chemical reactions to generate

electrical energy.

The anode may be called the electron donor and the cathode the electron

acceptor. In a Galvanic cell, the anode is negative and the cathode

positive.
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Photo‐induced ET at the Heart of Sciences & Applications:
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Solar Cells: Charge Separation and Transport are Critical

Steps:
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How a Solar Cell Works?

A solar cell is made of two types of semiconductors, called p-

type and n-type silicon. The p-type silicon is produced by

adding atoms—such as boron or gallium—that have one less

electron in their outer energy level than does silicon. Because

boron has one less electron than is required to form the bonds

with the surrounding silicon atoms, an electron vacancy or

“hole” is created.
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The n-type silicon is made by including atoms that have one more

electron in their outer level than does silicon, such as phosphorus.

Phosphorus has five electrons in its outer energy level, not four. It

bonds with its silicon neighbor atoms, but one electron is not involved in

bonding. Instead, it is free to move inside the silicon structure.
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A solar cell consists of a layer of p-type silicon placed next to a layer of

n-type silicon. In the n-type layer, there is an excess of electrons, and in

the p-type layer, there is an excess of positively charged holes (which

are vacancies due to the lack of valence electrons). Near the junction of

the two layers, the electrons on one side of the junction (n-type layer)

move into the holes on the other side of the junction (p-type layer). This

creates an area around the junction, called the depletion zone, in which

the electrons fill the holes.
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When all the holes are filled with electrons in the depletion zone, the p-

type side of the depletion zone (where holes were initially present) now

contains negatively charged ions, and the n-type side of the depletion

zone (where electrons were present) now contains positively charged

ions. The presence of these oppositely charged ions creates an internal

electric field that prevents electrons in the n-type layer to fill holes in

the p-type layer.
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When sunlight strikes a solar cell, electrons in the silicon are ejected, which

results in the formation of “holes”—the vacancies left behind by the escaping

electrons. If this happens in the electric field, the field will move electrons to the

n-type layer and holes to the p-type layer. If you connect the n-type and p-type

layers with a metallic wire, the electrons will travel from the n-type layer to the

p-type layer by crossing the depletion zone and then go through the external

wire back of the n-type layer, creating a flow of electricity.
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Light Absorption: How Do We See Colors?
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Molecules that Absorb Different Wavelength have Different Colors.
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