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10.1 INTRODUCTION

In our work so far, we have considered both normal and abnormal (short
circuit) operations of power system under completely balanced (symmetrical)
conditions. Under such operation the system impedances in cach phase are
identicul and the three-phase voltages and currents throughout the system are
completely balanced, i.c. they have equal magnitudes in each phase and are
progressively displaced in time phase by 120° (phase « leads/lags phase b by
120° and phase b leads/lags phase ¢ by 120°). In a balanced system. analysis
can proceed on a single-phase basis. The knowledge of voltage and current in
one phase is sufficient to completely determine voltages and currents in the
other two phases. Real and reactive powers are simply three times the
corresponding per phase values.

Unbalanced system operation can result in an otherwise balanced system due
to unsymmetrical fault, e.g. line-to-ground fault or line-to-line fault. These
faults are, in lact, o' more common occurrence* than the symmetrical (three-
phase) fault. System operation may also become unbalanced when loads are
unbalanced as in the presence of large single-phase loads. Analysis under
unbalanced conditions has to be carried out on a three-phase basis. Alterna-
tively, a more convenient method of analyzing unbalanced operation is through
syminetrical components where the three-phase v'oltages (and currents) which
may be unbalanced are transtormed into three sets of balanced voltages (and

* Typical relative frequencies of occurrence of different kinds of faults in a power
system (in order ol decreasing severity) are:

Three-phase (3L) faults 5%
Double line-to-ground (LLG) faults 10%
Double line (LL) laults 15%

Single line-to-ground (LG) faults 70%




b ke 40T
707

!
currents) called symmetrical components. Fortunately, in such a transformation

the impedances presented by various power system elements (synchronous
generators, transformers, lines) to symmetrical components are decoupled from
each other resulting in independent system networks for each component
(balanced set). This is the basic reason for the simplicity of the symmetrical
component method of analysis.
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10.2 SYMMETRICAL COMPONENT TRANSFORMATION

A set of three balanced voltages (phasors) V,, V,, V, is characterized by equal
magnitudes and interphase differences of 120°. The set is said to have a phase

sequence abc (positive sequence) if V,lags V, by 120° and V_lags V, by 120°..

The three phasors can then be expressed in terms of the reference phasor V, as
V, =V, V,= oV, V.= aV,
where the complex number operator « is defined as

o = 61120

It has the following properties

'a2 — €j240° — 8711200 — at
@) =a
(10.1)
a® =1
l4+a+a?=0

If the phase sequence is acb (negative sequence), then
V,=V,V,= aV, V.= &V,
Thus a set of balanced phasors is fully characterized by its reference phasor
(say V,) and its phase sequence (positive or negative).
Suffix 1 is commonly used to indicate positive sequence. A set of (balanced)
positive sequence phasors is written as
Vul’ Vbl = azvul’ Vcl = aVal (102)
Similarly, suffix 2 is used to indicate negative sequence. A set of (balanced)
negative sequence phasors is written as
Vi Vig= oV, Vo = 0PV (10.3)
A set of three voltages (phasors) equal in magnitude and having the same phase
is said to have zero sequence. Thus a set of zero sequence phasors is written
as
Vaor Voo = Vaor Voo = Vao (10.4)
Consider now a set of three voltages (phasors) V,, V,, V. which in general may
be unbalanced. According to Fortesque’s theorem* the three phasors can be

* The theorem is a general one and applies to the case of n phasors [6].
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expressed as the sum of positive, negative and zero sequence phasors defined
above. Thus

Va = Val + Va2 + VaO (105)
Vo= Vo + Via + Vi (10.6)
Vc = Vcl + Vc2 + VcO (107)

The three phasor sequences (positive, negative and zero) are called the
symmetrical components of the original phasor set V,, V,, V.. The addition of
symmetrical components as per Eqgs. (10.5) to (10.7) to generate V,, V,, V, is
indicated by the phasor diagram of Fig. 10.1.

Vi \Vbz =aVq Vi
"'/Vbu =V

- VCU:"LEU

-

/A
/ ,/vca

Vg b—

Fig. 10.1 Graphical addition of the symmetrical components to obtain
the set of phasors V,, V,, V, (unbalanced in general)

Let us now express Egs. (10.5) to (10.7) in terms of reference phasors V,,,

V,, and V. Thus
Vo= Vy+ Vo + Vo (10.8)
Vy= oV, + oV, + Vo (10.9)

V.= aVy, + oV, + Vg (10.10)

These equations can be expressed in the matrix form
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Vv, L1 17fvy,
V |[=]a* a 1[|V, (10.11)
A a o 1]|v, '
or
V, = AV, (10.12)
where
v,
V, =1V, | = vector of original phasors
LVe
~Val
V, = | Vaz | = vector of symmetrical components
_VaO
1 1 1
A=|a* a 1 (10.13)
L a o® 1
We can write Eq. (10.12) as
V, =AY, (10.14)
Computing A™! and utilizing relations (10.1), we get
1 a o
A7 = % 1 o a (10.15)
1 1 1
In expanded form we can write Eq. (10.14) as
V= %wn + aV, + o?V) (10.16)
v, = % (V,+ o2V, + aV) , (10.17)
Vo = ; (V,+ Vy + V) (10.18)

Equations (10.16) to (10.18) give the necessary relationships for obtaining
symmetrical components of the original phasors, while Egs. (10.5) to (10.7)
give the relationships for obtaining original phasors from the symmetrical
components.

The symmetrical component transformations though given above in terms of
voltages hold for any set of phasors and therefore automatically apply for a set
of currents. Thus

Symmetrical Components E;%E
|
1, = Al (10.19)
. and
I = A, (10.20)
where i
Ia Ial
I, =11, and I, = | I,,
Ic IaO

Of course A and A™! are the same as given earlier.

In expanded form the relations (10.19) and (10.20) can be expressed as
follows:

(i) Construction of current phasors from their symmetrical components:

=1+ 1I,+ I, (10.21)
L= ol + aly + I (10.22)
I.=ody + o®I, + I, (10.23)
(if) Obtaining symmetrical components of current phasors:
I = % (I, + of, + o) (10.24)
I,= % U, + oL, + o) (10.25)
N
Lo % U+ 1, + 1) (10.26)

Certain observations can now be made regarding a three-phase system with
neutral return as shown in Fig. 10.2.

T

Vab Vca %
| .

J :
| L g

1 Iy A b
Vi Ve
Vbc
Gt = o W - o = ..
I
_;n___ e

Fig. 10.2 Three-phase system with neutral return

The sum of the three line voltages will always be zero. Therefore, the zero
sequence component of line voltages is always zero, i.e.

VabO = %(Vab + Vbc + Vca) =0 (1027)
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On the other hand, the sum of phase voltages (line to neutral)’ may not be zero
so that their zero sequence component V,, may exist.

Since the sum of the three line currents equals the current in the neutral
wire, we have

1y = % €+ L+ 1)= %1,, (10.28)

i.e. the current in the neutral is three times the zero sequence line current. If the
neutral connection is severed,
1
Iy = gln =0 (10.29)
i.e. in the absence of a neutral connection the zero sequence line current is
always zero.

Power Invariance

We shall now show that the symmetrical component transformation is power
invariant, which means that the sum of powers of the three symmetrical
components equals the three-phase power.
Total complex power in a three-phase circuit is given by

S=VE L=V, I+ V, I+ V. I* (10.30)
or

S= [Av]"1AL]

= VTATA'T, (10.31)
Now
1 & a1 1 1 1 0 0
ATA" =1 a o a o 1{=30 1 0]|=3U(1032)
1 1 1|2 o 1 0 0 1

S=3ViUL, =3V,
=3V, Ly + 3Vl + 3Vl (10.33)

al’al

= sum of symmetrical component powers

ey

i Example 10.1:

A delta connected balanced resistive load is connected across an unbalanced
three-phase supply as shown in Fig. 10.3. With currents in lines A and B
specified, find the symmetrical components of line currents. Also find the
symmetrical components of delta currents. Do you notice any relationship
between symmetrical components of line and delta curreats ? Comment.

10£30°
A 5\
A\ by
/ N
—60° R
157=60 WA W
[ >
Fig. 10.3

Solution I+ Iz+ I =0
or
10430° + 154-60°+ I =0

- Io=-162 + j8.0 =18 /154° A
From Egs. (10.24) to (10.26)
Iy = %(10430" + 154(=60° + 120° ) + 18£(154° + 240°)

=10.35 + j9.3 = 14£42° A @)
Iy = %(10430° + 15/(= 60° + 240°) + 18£(154° + 120°)

= -17 - j43 = 4.65/248° A (ii)
Iyp= —; (L+Ig+1)=0 . (iii)

From Eq. (10.2)
Ip = 144282° A Ic = 14£162° A
I, =4.6548° A Icy = 4.652128° A
Igp=0A Ico =0 A
Check:
o= 1+ Lo+ Ty = 865 + j5 = 10£30°

Converting delta load into equivalent star, we can redraw Fig. 10.3 as in Fig.
10.4.

Ia

A
%RIB

<
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Delta currents are obtained as follows

1
Vag = ER Iy = Ig)

Now

1
Lip= VaglR = LUy~ I

Similarly,

1
Igc= g(IB - 1)

1
ey = g(lc =1y
Substituting the values of I, Iy and /., we have
Lp= %(10430" _15/- 60°) = 6/86° A

Iyc = %(154- 60° — 18£154°) = 10.5/- 41.5° A

Ty = %(184154° — 10/30°) = 83/173° A

The symmetrical components of delta currents are

Iip1 = %—(6486° + 10.54(- 41.5° + 120°) + 8.34£(173° + 240) (iv)

= 8/72° A
Ligr = ; (6£86° + 10.5/(~ 41.5° + 240°) + 8.3£(173° + 120°) (v)
= 27/218° A
Liso=0 (vi)

Igc1s Igcos Igcos Loars Lcan and 14, can be found by using Eq. (10.2).

Comparing Egs. (i) and (iv), and (ii) and (v), the following relationship
between symmetrical components of line and delta currents are immediately
observed:

Lig = %1'430" (vii)
Lin, = I—A%4—30° (viii)
AB2 — \/g

The reader should verify these by calculating Iz, and /,z,from Eqgs. (vii) and
(viii) and comparing the results with Egs. (iv) and (v).

1&g

10.3 PHASE SHIFT IN STAR-DELTA TRANSFORMERS

Positive and negative sequence voltages and currents undergo a phase shift in
passing through a star-delta transformer which depends upon the labelling of
terminals. Before considering this phase shift, we need to discuss the standard
polarity marking of a single-phase transformer as shown in Fig. 10.5. The
transformer ends marked with a dot have the same polarity. Therefore, voltage
Vyy- is in phase with voltage V;;,. Assuming that the small amount of
magnetizing current can be neglected, the primary current I}, entering the dotted
end cancels the demagnetizing ampere-turns of the secondary current /, so that
I, and I, with directions of flow as indicated in the diagram are in phase. If the
direction of I, is reversed, I, and /, will be in phase opposition.

an—ﬁ—‘ g——_i?—qL
(]

~

Vi’ Vi

é

H' -y

’

Fig. 10.5 Polarity marking of a single-phase transformer™

Consider now a star/delta transformer with terminal labelling as indicated in
Fig. 10.6 (a). Windings shown parallel to each other are magnetically coupled.
Assume that the transformer is excited with positive sequence voltages and
carries positive sequence currents. With the polarity marks shown, we can
immediately draw the phasor diagram of Fig. 10.7. The following interrelation-
ship between the voltages on the two sides of the transformer is immediately
observed from the phasor diagram

Vugr = * V1 £30°% x = phase transformation ratio  (10.34)

As per Eq. (10.34), the positive sequence line voltages on star side lead the
corresponding voltages on the delta side by 30° (The same result world apply
to line-to-neutral voltages on the two sides). The same also applizs for line
currents.

If the delta side is connected as in Fig. 10.6(b) the phase shut reverses (the
reader should draw the phasor diagram); the delta side quantities lead the star
side quantities by 30°.
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(b) Delta side quantities lead star side quantities by 30°

Fig. 10.6 Labelling of star/delta transformer

hY

Vet
Fig. 10.7 Positive sequence voltages on a star/delta transformer

Instead, if the transformer of Fig. 10.6(a) is now excited by negative
sequence voltages and currents, the voltage phasor diagram will be as in Fig.
10.8. The phase shift in comparison to the positive sequence case now reverses,
ie., the star side quantities lag the delta side quantities by 30°. The result for
Fig. 10.6(b) also correspondingly reverses.

It shall from now onwards be assumed that a star/delta transformer is so
labelled that the positive sequence quantities on the HV side lead their

corresponding positive sequence quantities on the LV side by 30°. The reverse
is the case for negative sequence quantities wherein HV quartities lag the
corresponding LV quantities by 30°.

Vacz
Vanz \
\\
Viez "
Vabz Vare
7 i
T e
/ M kS
-~ ! ™~
/ ; Vcaz \\
) / :
Veaz Vene L Vagz

Fig. 10.8 Negative sequence voltages on a star/delta transformer

10.4 SEQUENCE IMPEDANCES OF TRANSMISSION LINES

oY

Figure 10.9 shows the circuit of a fully transposed line carrying unbalanced
currents. The return path for 7, is sufficiently away for the mutual effect to be
ignored. Let

X, = sell reactance of each line
X,, = mutual reactance of any line pair
The following KVL equations can be written down from Fig. 10.9.
Vo= Vo= jXd, + iXply + iX,l,

I Ay
X ¢ - - GO0 o —
X
Iy / L X
SR B 1)1 )
|
1.%m \\\ kxm S
Ty R - |
T * \IDD ¥ I |
Va | Vb | Ve In=lo* I+ I v Vb’! Ve
| i
i - s o] .
Fig. 10.9
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Vy = Vi = iX,d, + X, + jX, 1, (10.35)
Ve = Vi=JXol, + jX 0y + jXd,
or in matrix form
v, 54 XXX, 1,
Vi |=| Vs | = 7| X, XX, | 1, (10.36)
Vel LV Xp X X, |1,
or Vorm W= ZL, (10.37)
or AWV, V)= ZAI, (10.38)
or V,— V= dA"z4l, (10.39)
Now
I o o X jX, JxX, T 1 1
A'z4 = % 1 & al|JX, X jX, | a 1](1040)
Lo |yX, JX, X fla o 1
X, —X, 0 0
=j 0 X, —-X, 0
0 0 X +2X,
Thus Eq. (10.37) can be written as
ni vy X =X, 0 0 4
ni-\vy |=j 0 X, - X, 0 I, (10.41)
A v 0 0 X, +2X, | 1,
A 0 0717
=10 Z 017, (10.42)
0 0  Z,| 1
wherein
Z, = j(X; — X,,) = positive sequence impedance (10.43)
Zy = j(X, — X,) = negative sequence impedance (10.44)
Zy= j(X, + 2X,) = zero sequence impedance (10.45)

We conclude that a fully transposed transmission has:
(i) equal positive and negative sequence impedances.
(ii) zero sequence impedance much larger than the positive (or negative)
sequence impedance (it is approximately 2.5 times).
It is further observed that the sequence circuit equations (10.42) are in
decoupled form, i.c. there arc no mutual sequence inductances. Equation
(10.42) can be represented in network form as in Fig. 10.10.

Symmetrical Components

g 4 b Zp lo Z
[ —{ ———0 o— »—{ } ——0 o—>— r~£—\»——o
Vi ’ V‘1 Vz V’2 VO v})
o e e ] [o2 © Lo —O
(a) Positive sequence (b) Nagative sequence (¢) Zero sequence
network network network
Fig. 10.10

The decoupling between sequence networks of a fully transposed transmis-
sion holds also in 3-phase synchronous machines and 3-phase transformers.
This fact leads to considerable simplications in the use of symmetrical
components method in unsymmetrical fault analysis.

In case of three static unbalanced impedances, coupling appears between
sequence networks and the method is no more helpful than a straight forward
3-phase analysis.

10.5 SEQUENCE IMPEDANCES AND SEQUENCE NETWORK
OF POWER SYSTEM

Power system elements—transmission lines, transformers and synchronous
machines—have a three-phase symmetry because of which when ‘currents of a
particular sequence are passed through these elements, voltage drops of the
same sequence appear, i.e. the elements possess only self impedancegs. to
sequence currents. Each element can therefore be represented by three
decoupled sequence networks (on sirgle-phase basis) pertaining to positive,
negative and zero sequences, respectively. EMFs are involved only in a positive
sequence network of synchronous machines. For finding a particular sequence
impedance, the element in question is subjected to currents and voltages of that
sequence only. With the element operating under these conditions, the sequence
impedance can be determined analytically or through experimental test results.

With the knowledge of sequence networks of elements, complete positive,
negative and zero sequence networks of any power system can be assembled.
As will be explained in the next chapter. these networks are suitably
interconnected to simulate different unsymmetrical faults. The sequence
currents and voltages during the fault are then calculated from which actual
fault currents and voltages can be found.

10.6 SEQUENCE IMPEDANCES AND NETWORKS OF
SYNCHRONOUS MACHINE

Figure 10.11 depicts an unloaded synchronous machine (generator or motor)
grounded through a reactor (impedance Z,). E,, E, and E. are the induced emfs
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of the three phases. When a fault (not shown in the figure) takes place at
machine terminals, currents /,, I, and /. flow in the lines. Whenever the fault
involves ground, current /, = I, + I + I flows to neutral from ground via Z,.
Unbalanced line currents can be resolved into their symmetrical components [,
I, and I, Before we can proceed with fault analysis (Chapter 11), we must
know the equivalent circuits presented by the machine to the flow of positive,
negative and zero sequence currents, respectively. Because of winding
symmetry currents of a particular sequence produce voltage drops of that
sequence only. Therefore, there is a no coupling between the equivalent circuits
of various sequences*.

Fig. 10.11 Three-phase synchronous generator with grounded neutral

Positive Sequence Impedance and Network

Since a synchronous machine is designed with symmetrical windings, it induces
emfs of positive sequence only, i.e. no negative or zero sequence voltages are
induced in it. When the machine carries positive sequence currents only, this
mode of operation is the balanced mode discussed at length in Chapter 9. The
armature reaction field caused by positive sequence currents rotates at
synchronous speed in the same direction as the rotor, i.e., it is stationary with
respect to field excitation. The machine equivalently offers a direct axis
reactance whose value reduces from subtransient reactance (X", to transient
reactance (X/;) and finally to steady state (synchronous) reactance (X,), as the
short circuit transient progresses in time. If armature resistance is assumed
negligible, the positive sequence impedance of the machine is

Z, = jX] (if 1 cycle transient is of interest) (10.46)
= jX; (if 3-4 cycle transient is of interest) (10.47)
= jX, (if steady state value is of interest) (10.48)

If the machine short circuit takes place from unloaded conditions, the
terminai voltage constitutes the positive sequence voltage; on the other hand, if

*This can be shown to be so by synchronous machine theory. [5].

the short circuit occurs from loaded conditions, the voltage behind appropriate
reactance (subtransient, transient or synchronous) constitutes the positive

sequence voltage.

Figure 10.12a shows the three-phase po§itive sequence network model .o.t a
synchronous machine. Z, does not appear in the n'lodel as I, =0 for posxtl;fle
sequence currents. Since it is a balanced network it can be representec‘i' by rlfhe
single-phase network model of Fig. 10.12b f.or purposes of an.alysls. e
reference bus for a positive sequence network is at neut.ral potential. Furth.er,
since no current flows from ground to neutral, the neutral is at ground potential.

Ia‘l
.

l— a
)
= % Reference bus
JE 1
( )E (VB |
i |
0 ‘ Var
z P et 22, |
ey Ee Ep 90 I ~ ‘
RN < ki B |774.74f
'( la1 4
[ Ic1
— c

7 (;a) Three-phase model (b) Single-phase model

Fig. 10.12 Positive sequence network of synchronous machine

With reference to Fig. 10.12b, the positive sequence voltage of terminal a
with respect to the reference bus is given by

Vul = En - lenl (1049)

Negative Sequence Impedance and Network

It has already been said that a synchronous machine has zero negg[ive sequence
induced voltages. With the flow of negative sequence c'urrel.lts in the sta;orha
rotating field is created which rotates in the opposite direction to t.hat of the
positive sequence field and, therefore, at double synchronous spged Wlth.res‘pect
to rotor. Currents at double the stator frequency are therefore induced in roFor
field and damper winding. In sweeping over the rotor‘su'rface, the negative
sequence mmf is alternately presented with reluctances of direct and qgadratgrﬁ
axes. The negative sequence impedance p.resented bY the machine wit
consideration given to the damper windings, is often defined as

Xy + X7

= (10.50)
=

VAR VA

Negative sequence network models of a synchronous machine, on a three-
phase and single-phase basis are shown in Figs. 10.13a apd b, respectively. The
reference bus is of course at neutral potential which is the same as ground

potential.
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From Fig. 10.13b the negative sequence voltage of terminal @ with respect
to reference bus is

Reference bus

3) Z |
n = =z Vaa
% ﬂg\/&#z
sEb i Ib2
R 2 - a
( la2

L . .
S -
(a) Three-phase model

Fig. 10.13 Negative sequence network of a synchronous machine

(b) Single-phase model

Zero Sequence Impedance and Network

We state once again that no zero sequence voltages are induced in a
synchronous machine. The flow of zero sequence currents creates three mmfs
which are in time phase but are distributed in space phase by 120°. The
resultant air gap field caused by zero sequence currents is therefore zero.
Hence, the rotor windings present leakage reactance only to the flow of zero
sequence currents (Zy, < Z, < Z,).

I fe0 —a _ Reference bus
J'n=3"ap ‘::3 Zoy g
" l ? (CSBZ"
i 'MM-\,’(EJ -n'-g),-w?Og . tn Vay
}/_ — - -¢ b a

(a) Three-phase model (b) Single-phase model

10.14 Zero sequence network of a synchronous machine

Zero sequence network models on a three- and single-phase basis are shown
in Figs. 10.14a and b. In Fig. 10.14a, the current flowing in the impedance Z,
between neutral and ground is I, = 31, The zero sequence voltage of terminal
a with respect to ground, the reference bus, is therefore

Vao = = 3Zudug = Zoglao =~ B3Z, + Zyg) L, (10.52)
where Z,, is the zero sequence impedance per phase of the machine.

Since the single-phase zero sequence network of Fig. 10.14b carries only per
phase zero sequence current, its total zero sequence impedance must be

Symmetrical Components

Zy=3Z, + Zy, (10.53)
in order for it to have the same voltage from a to reference bus. The reference
bus here is, of course, at ground potential.

From Fig. 10.14b zero sequence voltage of point a with respect to the
reference bus is

Vo= — Zoly (10.54).

Order of Values of Sequence Impedances of a
Synchronous Generator

Typical values of sequence impedances of a turbo-generator rated 5 MVA, 6.6
kV, 3,000 rpm are:

Z, = 12% (subtransient)
Z, = 20% (transient)

Z, = 110% (synchronous)
Z,=12%

Zy=5%

For typical values of positive, negative and zero sequence reactances of a
synchronous machine refer to Table 9.1.

10.7 SEQUENCE IMPEDANCES OF TRANSMISSIdN LINES

A fully transposed three-phase line is completely symmetrical and therefore the
per phase impedance offered by it is independent of the phase sequence of a
balanced set of currents. In other words, the impedances offered by it to positive
and negative sequence currents are identical. The expression for its per phase
inductive reactance accounting for both self and mutual linkages has been
derived in Chapter 2.

When only zero sequence currents flow in a transmission line, the currents
in each phase are identical in both magnitude and phase angle. Part of these
currents return via the ground, while the rest return through the' overhead
ground wires. The ground wires being grounded at several towers, the return
currents in the ground wires are not necessarily uniform along the entire length.
The flow of zero sequence currents through the transmission lines, ground wires
and ground creates a magnetic field pattern which is very different from that
caused by the flow of positive or negative sequence currents where the currents
have a phase difference of 120° and the return current is zero. The zero
sequence impedance of a transmission line also accounts for the ground
impedance (Z; = Z,, + 3Z,). Since the ground impedance heavily depends on
soil conditions, it is essential to make some simplifying assumptions to obtain
analytical results. The zero sequence impedance of transmission lines usually
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ranges from 2 to 3.5 times the positive sequence impedance*. This ratio is on
the higher side for double circuit lines without ground wires.

10.8 SEQUENCE IMPEDANCES AND NETWORKS OF
TRANSFORMERS

It is well known that almost all present day installations have three-phase
transformers since they entail lower initial cost, have smaller space require-
ments and higher efficiency.

The positive sequence series impedance of a transformer equals its leakage
impedance. Since a transformer is a static device, the leakage impedance does
not change with alteration of phase sequence of balanced applied voltages. The
transformer negative sequence impedance is also therefore equal to its leakage
reactance. Thus, for a transformer

Zl = ZZ = Zlcukugc (]055)

Assuming such transformer connections that zero sequence currents can flow
on both sides, a transformer offers a zero sequence impedance which may differ
slightly from the corresponding positive and negative sequence values. It is,
however, normal practice to assume that the series impedances of all sequences
are equal regardless of the type of transformer.

The zero sequence magnetizing current is somewhat higher in a core type
than in a shell type transformer. This difference does not matter as the
magnetizing current of a transformer is always neglected in short circuit
analysis.

Above a certain rating (1,000 kVA) the reactance and impedance of a
transformer are almost equal and are therefore not distinguished.

*We can easily compare the forward path positive and zero sequence impedances of
a transmission line with ground return path infinitely away. Assume that each line has
a self inductance. L and mutual inductance M between any two lines (completely
symmetrical case). The voltage drop in line a caused by positive sequence currents is

vAnl = wlLl, + WMIM + L‘)Ml(:l

al
= [wl+ (&% + @) WML, = W(L-M)I,
Positive sequence reactance = w(L— M)
The voltage drop in line a caused by zero sequence currents is
Vaao = Whiyg + wMlyy + wMI

= w(l + 2M)l,

Zero sequence reactance = w(L + 2M)
Obviously, zero sequence reactance is much more than positive sequence reactance.
This result has already been derived in Eq. (10.45).
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Zero Sequence Networks of Transformers

Before considering the zerosequence networks of various types of transformer
connections, three important observations are made:
(1) When magnetizing current is neglected; transformer primary would carry
current only if there is current flow on the secondary side.
(i) Zero sequence currents can flow in the legs of a star connection only if
the star point is grounded which provides the necessary return path for
zero sequence currents. This fact is illustrated by Figs. 10.15a and b.

= /
lao 0 - ‘15 a0 1a
> >
< 2z
S <
JQ n__ 3o
\f 7| I - |J 1 | | -
lo=0 I b=, lo=lao ! <
— ¢ L . b
|
Ibo=0 Ieo=la0 |
> >

(a) Ungrounded star (a) Grounded star

Fig. 10.15 Flow of zero sequence currents in a star connection

(iii) No zero sequence currents can flow in the lines connected to a delta
connection as no return path is available for these currents. Zero sequence
currents can, however, flow in the legs of a delta—such currents are
caused by the presence of zero sequence voltages in the delta connection.

This fact is illustrated by Fig. 10.16.

/50 =0 - a
leao = labo “ 5
lo=0 4
» A §
lbe=10 Ibco = labo

» S —

Fig. 10.16 Flow of zero sequence currents in a delta connection

Let us now consider various types of transformer connections.
Case 1: Y-Y transformer bank with any one neutral grounded.

If any one of the two neutrals of a Y-Y transformer is ungrounded, zero sequence
currents cannot flow in the ungrounded star and consequently, these cannot flow
in the grounded star. Hence, an open circuit exists in the zero sequence network
between H and L, i.e. between the two parts of the system connected by the

transformer as shown in Fig. 10.17.
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Fig. 10.17  Y-Y transformer bank with one neutral grounded and its zero
sequence network

Case 2: Y-Y iransformer bank both neutrals grounded

When both the neutrals of a Y-Y transformer are grounded, a path through the
transformer exists for zero sequence currents in both windings via the two
grounded neutrals. Hence, in the zero sequence network H and L are connected
by the zero sequence impedance of the transformer as shown in Fig. 10.18.

Case 3: Y-A transformer bank with grounded Y neutral

| l 1L
] 3 [ !

s = E 3

! l— 7j‘y I I'H‘ | Reference bus

L e B :‘ -

T Ly

; | T

L { ] o/ —o
' H Zy L

Fig. 10.18 Y-Y transformer bank with neutrals grounded and its zero
sequence network
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Fig. 10.19 Y-A transformer bank with grounded Y neutral and its zero
sequence network

If the neutral of star side is grounded, zero sequence currents can flow in star
because a path is available to ground and the balancing zero sequence currents
can flow in delta. Of course no zero sequence currents can flow in the line on
the delta side. The zero sequence network must therefore have a path from the
line H on the star side through the zero sequence impedance of the transformer

1

to the reference bus, while an open circuit must exist on the line L side of delta
(see Fig. 10.19). If the star neutral is grounded through Z,, an impedance 3Z,
appears in series with Z, in the sequence network.

Case 4: Y-A transformer bank with ungrounded star

This is the special case of Case 3 where the neutral is grounded through
Z = oc. Therefore no zero sequence current can flow in the transformer

w,indings. The zero sequence network then modifies to that shown in Fig. 10.20.

Hi = ——
% | 33;)1 Reference bus

60

| e —
] . H Tz L

B
S
Sy

Fig. 10.20 Y-A transformer bank with ungrounded star and its
zero sequence network

Case 5: A-A transformer bank

Since a delta circuit provides no return path, the zero sequence currents cannot
flow in or out of A-A transformer; however, it can circulate in the delta
windings*. Therefore, there is an open circuit between H and L and Z, is
connected to the reference bus on both ends to account for any circulating zero
sequence current in the two deltas (see Fig. 10.21).

H : . 'L Referencebus

' K \/’ I \FJ;\\ i I

! Rk 5 9y ' |
o 2 = ]

‘1 Sy L:-é l s {_\// !

1 o 605, i _ ‘

3 Sk [ r | . : . ~ - — o
! L= Lg > :

Fig. 10.21 A-A transformer bank and its zero sequence network

10.9 CONSTRUCTION OF SEQUENCE NETWORKS OF A
POWER SYSTEM

In the previous sections the sequence networks for various power system
elements—synchronous machines, transformers and lines—have been given.
Using these, complete sequence networks of a power system can be easily
constructed. To start with, the positive sequence network is constructed by

*Such circulating currents would exist only if zero sequence voltages are somehow
induced in either delta winding.
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examination of the one-line diagram of the system. It is to be noted that positive

sequence voltages are present in synchronous machines (generators and motors)
only. The transition from positive sequence network to negative sequence
network is straightforward. Since the positive and negative sequence imped-
ances are identical for static clements (lines and transformers), the onty change
necessary in positive sequence network to obtain negative sequence network is
in respect of synchronous machines. Each machine is represented by its
negative sequence impedance, the negative sequence voltage being zero.

The reference bus for positive and negative sequence networks is the system
neutral. Any impedance connected between a neutral and ground is not included
in these sequence networks as neither of these sequence currents can flow in
such an impedance.

Zero sequence subnetworks for various parts of a system can be easily
combined to form complete zero sequence network. No voltage sources are
present in the zero sequence network. Any impedance included in generator or
transformer neutral becomes three times its value in a zero sequence network.
Special care needs to be taken of transformers in respect of zero sequence
network. Zero sequence networks of all possible transformer connections have
been dealt with in the preceding section.

The procedure for drawing sequence networks is illustrated through the
following examples.

!Example 10.2

A 25 MVA, 11 kV, three-phase generator has a subtransient reactance of 20%.
The generator supplics two motors over a transmission line with transformers
at both ends as shown in the one-line diagram of Fig. 10.22. The motors have
rated inputs of 15 and 7.5 MV A, both 10 kV with 25% subtransient reactance.
The three-phase transformers are both rated 30 MVA, 10.8/121 kV, connection
A-Y with leakage reactance of 10% each. The series reactance of the line is
100 ohms. Draw the positive and negative sequence networks of the system
with reactances marked in per unit.

2 p Motor
e | . T S
Gen d J r¢ j\g g | &1> ]
L] ) c®

3 ‘ Bl . (5
. ( )
= £ | [ T4 7 Motor %
| il

Fig. 10.22

Assume that the negative sequence reactance of each machine is equal to its
subtransient reactance. Omit resistances. Select generator rating as base in the
generator circuit.

Solution A base of 25 MVA, 11 kV in the generator circuit requires a 25
MVA base in all other circuits and the following voltage bases.

Transmission line voltage base = 11 x % = 123.2 kV

Motor voltage base = 123.2 x 110718 =11 kV
The reactances of transformers, line and motors are converted to pu values
on appropriate bases as follows:

2
Transformer reactance = 0.1 x % x (%) = (0.0805 pu

100 x 25

100x25 _ 164
(1232)? pu

Line reactance =

25 (10
Reactance of motor 1 = 0.25 x i-s—x T =0.345 pu

25 (10 _
Reactance of motor 2 = 0.25 x 75 X 1) 0.69 pu

The required positive sequence network is presented in Fig. 10.23.

Reference bus

| A

Eg( ) Em1( ) { YEm2
+] + [ I+
02:] G845 R 1 j069
Joe j0-345 " > o
ab g e g
j0-0805 jo164 j0-0805

Fig. 10.23 Positive sequence network for Example 10.3

| |
P —r——
dt—f‘m s T T s s S W
Jj0-0805 jo164 j0-0805

Fig. 10.24 Negative sequence network for Example 10.3

Since all the negative sequence reactances of the system are equal to the
positive sequence reactances, the negative sequence network is identical to the
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positive sequence network but for the omission of voltage sources. The negative
sequence network is drawn in Fig. 10.24.

f"Exé'r}:plé*m'.s '

For the power system whose one-line diagram is shown in Fig. 10.25, sketch
the zero sequence network.
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Fig. 10.25

Solution The zero sequence network is drawn in Fig. 10.26.

Reference bus

[
32,
7 Zog2
Zygt
M U v
. o

N
Zn Zo(line)

Fig. 10.26 Zero sequence network of the system presented in Fig. 10.25
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Example 10.4 '

Draw the zero sequence network for the system described in Example 10.2.
Assume zero sequence reactances for the generator and motors of 0.06 per unit.
Current limiting reactors of 2.5 ohms each are connected in the neutral of the
generator and motor No. 2. The zero sequence reactance of the transmission
line is 300 ohms.

Solution The zero sequence reactance of the transformer is equal to its
positive sequence reactance. Hence

Transformer zero sequence reactance = 0.0805 pu
Generator zero sequence reactances = 0.06 pu

_ 25 (10
Zero sequence reactance of motor 1 = 0.06 x EX T

= 0.082 pu

Symmetrical Compﬁnents

25 (10Y
Zero sequence reactance of motor 2 = 0.06 x ﬁx T
= 0.164 pu
Reactance of current limiting reactors = S 0.516 pu

(11)?

Reactance of current limiting reactor included in zero sequence network '
=3 x 0.516 = 1.548 pu

300 x 25
(123.2)?

= 0.494 pu

The zero sequence network is shown in Fig. 10.27.

Zero sequence reactance of transmission line =

Reference bus

l

i
| 1
|
j1548 =

)
= j1548
|joos2 [

jo06 % 3 ;ij,mm
d e f .E
L ¢ L 2 e L i

j00805 j0-494 j0-0805 g &

Fig. 10.27 Zero sequence network of Example 10.5

PROBLEMS

10.1 Compute the following in polar form
(i) o1 (i) 1- a— o (i) 36 + 4a + 2 (iv) ja

10.2 Three identical resistors are star connected and rated 2,500 V, 750 kVA.
This three-phase unit of resistors is connected to the Y side of a A-Y
transformer. The following are the voltages at the resistor load

IVl = 2,000 V; 1V, | =2900 V; IV, =2,500 V
Choose base as 2,500 V, 750 kVA and determine the line voltages and
currents in per unit on the delta side of the transformer. It may be assumed
that the load neutral is not connected to the neutral of the transformer
secondary.
10.3 Determine the symmetrical components of three voltages
V,=200£0° V, = 200£245° and V, = 200£105° V
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10.4 A single-phase resistive load of 100 kKVA is connected across lines bc of
a balanced supply of 3 kV. Compute the symmetrical components of the
line currents.

10.5 A delta connected resistive load is connected across a balanced three-
phase supply

Ia a

A—r—r

15 Qé /.%209

le
G=* e YVV—b
I 250 0
B—»

Fig. P-10.5 Phase sequence ABC

of 400 V as shown in Fig. P-10.5. Find the symmetrical components of
line currents and delta currents.

10.6 Three resistances of 10, 15 and 20 ohms are connected in star across a
three-phase supply of 200 V per phase as shown in Fig. P-10.6. The
supply neutral is earthed while the load neutral is isolated. Find the
currents in each load branch and the voltage of load neutral above earth.
Use the method of symmetrical components.

A Ia a
r = P |
4 ]
»3 200V <100
) | <
[
[ " > 200 ~ 150
—x lr-i n' J.‘-".:) p /‘I\J\IV IL"L |
C B C b
L lg ]
i = =
le
Fig. P-10.6

10.7 The voltages at the terminals of a balanced load consisting of three 20
ohm Y-counected resistors are 20020° 100 £255.5° and 200 £151° V.
Find the line currents from the symmetrical components of the line
voltages if the neutral of the load is isolated. What relation exists between
the symmetrical components of the line and phase voltages? Find the
power expanded in three 20 ohm resistors from the symmetrical
components of currents and voltages.

10.8. Draw the positive, negative and zero sequence impedance networks for
the power system of Fig. P-10.8.

Choose a base of 50 MVA, 220 kV in the 50 ) transmission lines, and
mark all reactances in pu. The ratings of the generators and transformers
are:

Generator 1: 25 MVA, 11 kV, X" = 20%
Generator 2: 25 MVA, 11 kV, X" = 20%
Three-phase transformer (each): 20 MVA, 11 Y/220 Y kV, X = 15%

The negative sequence reactance of each synchronous machine is equal
to its subtransient reactance. The zero sequence reactance of each
machine is 8%. Assume that the zero sequence reactances of lines are
250% of their positive sequence reactances.

f(ﬁ 50 ©
EVERE

50
oy PIC E—D
X=5% . :
at machine: 1 rating at machine 2 rating
Fig. P-10.8

10.9 For the power system of Fig. P-10.9 draw the positive, negative and zero
sequence networks. The generators and transformers are rated as follows:

Generator 1: 25 MVA, 11 kV, X" =02, X, = 0.15, X, = 0.03 pu
Generator 2: 15 MVA, 11 kV, X" =02, X, = 0.15, X, = 0.05 pu
Synchronous Motor 3: 25 MVA, 11 kV, X" = 0.2, X, =0.2, X, = 0.1 pu
Transformer 1: 25 MVA, 11 A/120 Y kV, X = 10%

2: 125 MVA, 11 A/120 Y kV, X = 10%

3: 10 MVA, 120 Y/11 Y kV, X = 10%
Choose a base of S0 MVA, 11 kV in the circuit of generator 1.

Ty T2
. 7 : 4 Bl
O ‘ r ﬁE - d28 rj 1 159£7F| X ()
> bl ble -
SN E
B O 7 ALY

7 T;-;EH: el h
5%
(3) \,ifnj

Fig. P-10.9

Note: Zero sequence reactance of each line is 250% of its positive
sequence reactance.
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10.10 Consider the circuit shown in Fig. P-10.10. Suppose

V,, = 100 £0 X,=12 Q
Vpn = 60 2£60° Xp=X,,=X,=59
V., =68 £120°
_,Yﬁﬂ_‘+ _’:» Xs
‘ Yo Tir'mb'\ —
Vbn / ‘ s
P b1y | Xs |
S + —» | Xca __}_ o |
‘ Vcn i \ Xbe ‘
c Xs
\_ J@\‘F 2 L . r"?"'é' R |
Fig. P-10.10

(a) Calculate I, I,, and /, without using symmetrical component.
(b) Calculate I, I, and I, using symmetrical component.
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