9.1 INTRODUCTION

So far we have dealt with the steady state behaviour of power system under
normal operating conditions and its dynamic behaviour under small scale
perturbations. This chapter is devoted to abnormal system behaviour under
conditions of symmetrical short circuit (symmetrical three-phase-fault*). Such
conditions are caused in the system accidentally through insulation failure of
equipment or flashover of lines initiated by a lightning stroke or through
accidental faulty operation. The system must be protected against flow of heavy
short circuit currents (which can cause permanent damage to major equipment)
by disconnecting the faulty part of the system by means of circuit breakers
operated by protective relaying. For proper choice of circuit breakers and
protective relaying, we must estimate the magnitude of currents that would flow
under short circuit conditions—this is the scope of fault analysis (study).

The majority of system faults are not three-phase faults but faults involving
one line to ground or occasionally two lines to ground. These are unsymmetrical
faults requiring special tools like symmetrical components and form the subject
of study of the next two chapters. Though the symmetrical faults are rare, the
symmetrical fault analysis must be carried out, as this type of fault generally
leads to most severe fault current flow against which the system must be
protected. Symmetrical fault analysis is, of course, simpler to carry out.

A power network comprises synchronous generators, transformers, lines and
loads. Though the operating conditions at the time of fault are important, the
loads can be neglected during fault, as voltages dip very low so that currents
drawn by loads can be neglected in comparison to fault currents.

*Symmetrical fault may be a solid three-phase short circuit or may dénvolve are
impedance.
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The synchronous generator during short circuit has a characteristic time-
varying behaviour. In the event of a short circuit, the flux per pole undergoes
dynamic change with associated transients in damper and field windings. The
reactance of the circuit model of the machine changes in the first few cycles
from a low subtransient reactance to a higher transient value, finally settling at
a still higher synchronous (steady state) value. Depending upon the arc
interruption time of circuit breakers, a suitable reactance value is used for the
circuit model of synchronous generators for short circuit analysis.

In a modern large interconnected power system, heavy currents flowing
during a fault must be interrupted much before the steady state conditions are
established. Furthermore, from the considerations of mechanical forces that act
on circuit breaker components, the maximum current that a breaker has to carry
momentarily must also be determined. For selecting a circuit breaker we must,
therefore, determine the initial current that flows on occurrence of a short
circuit and also the current in the transient that flows at the time of circuit
interruption.

9.2 TRANSIENT ON A TRANSMISSION LINE

Let us consider the short circuit transient on a transmission line. Certain
simplifying assumptions are made at this stage.
(1) The line is fed from a constant voltage source (the case when the line is
fed from a realistic synchronous machine will be treated in Sec. 9.3).
(ii) Short circuit takes place when the line is unloaded (the case of short
circuit on a loaded line will be treated later in this chapter).
(iii) Line capacitance is negligible and the line can be represented by a lumped
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Fig. 9.1

With the above assumptions the line can be represented by the circuit model
ot Fig. 9.1. The short circuit is assumed to take place at ¢ = 0. The parameter
« controls the instant on the voltage wave when short circuit occurs. It is known
from circuit theory that the current after short circuit is composed of two parts,
i€

=i+ i

where

i, = steady state current
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i, = yransignt current [it is such that i(0) = i (0) + i,(0) = O being an
inductive circuit; it decays corresponding to the time constant I/R).
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Thus short circuit current is given by
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Symmetrical short DC off— set current

circuit current

A plot of i, i, and-i = i, + i, is shown in Fig. 9.2. In power system terminology,
the sinusoidal steady state current is called the symmetrical short circuit
current and the unidirectional transient component is called the DC off-set
current, which causes the total short circuit current to be unsymmetrical till the
transient decays.

It easily follows from Fig. 9.2 that the maximum momentar\y short circuit
current i, corresponds to the first peak. If the decay of transient current in this
short time is neglected,

2v . V2V
[ = sin (4 — +—=
mm = 7780 (0= @)+ ©2)
Since transmission line resistance is small, # ~ 90°,
JS2v 2y
[ = ———COS -}
oz 1ZI ®-3)

This has the maximum possible value for « = 0, i.e. short circuit occurring
when the voltage wave is going through zero. Thus

. J2v

Imm (mass possible) = ?l—" (9.4)

= twice the maximum of symmetrical short circuit current
(doubling effect)

For the selection of circuit breakers, momentary short circuit current is taken
corresponding to its maximum possible value (a safe choice).
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‘what is the current to be interrunted?’ As hag been
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pointed out earher, modern day circuit breakers are designed to interrupt the
current in the first few cycles (five cycles or less). With reference to Fig. 9.2
it means that when the current is interrupted, the DC off-set (i,) has not yet died
out and so contributes to the current to be interrupted. Rather than computing
the value of the DC off-set at the time of interruption (this would be highly
complex in a network of even moderately large size), the symmetrical short
circuit current alone is calculated. This figure is then increased by an empirical
multiplying factor to account for the DC off-set current. Details are given in
Sec. 9.5.
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Fig. 9.2 Waveform of a short circuit current on a transmission line

9.3 SHORT CIRCUIT OF A SYNCHRONOUS MACHINE (ON
NO LOAD)

Under steady state short circuit conditions, the armature reaction of a
synchronous generator produces a demagnetizing flux. In terms of a circuit this
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effect is modelled as a reactance X, in series with the induced emf. Thi

reactance when combined with the leakage reactance X, of the machine is called
synchronous reactance X, (direct axis synchronous reactance in the case of
salient pole machines). Armature resistance being small can be neglected. The
steady state short circuit model of a synchronous machine is shown in Fig. 9.3a
on per phase basis.
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(a) Steady state short circuit mode! (b) Approximate circuit model during

subtransient period of short circuit

ﬂiﬂ
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(c) Approximate circuit model during
transient period of short circuit

Fig. 9.3

Consider now the sudden short circuit (three-phase) of a synchronous
generator initially operating under open circuit conditions. The machine
undergoes a transient in all the three phase finally ending up in steady state
conditions described above. The circuit breaker must, of course, interrupt the
current much before steady conditions are reached. Immediately upon short
circuit, the DC off-set currents appear in all the three phases, each with a
different magnitude since the point on the voltage wave at which short circuit
occurs is different for each phase. These DC off-set currents are accounted for
separately on an empirical basis and, therefore, for short circuit studies, we
need to concentrate our attention on symmetrical (sinusoidal) short circuit
current only. Immediately in the event of a short circuit, the symmetrical short
circuit current is limited only by the leakage reactance of the machine. Since the
air gap flux cannot change instantaneously (theorem of constant flux linkages),
to counter the demagnetization of the armature short circuit current, currents
appear in the field winding as well as in the damper winding in a direction to
help the main flux. These currents decay in accordance with the winding time
constants. The time constant of the damper winding which has low leakage
inductance is much less than that of the field winding, which has high leakage



332 | Modern Power System Analysis

|
inductance. Thus during the initial part of the short circuit, the damper and field

windings have transformer currents induced in them so that in the circuit model
their reactances—X; of field winding and Xy, of damper winding—appear in
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parallel* with X, as shown in Fig. 9.3b. As the damper winding currents are

first to die out, X, effectively becomes open circuited and at a later stage X;

becomes open circuited. The machine reactance thus changes from the parallel
combination of X, X;and X, during the initial period of the short circuit to
X, and X; in parallel (Fig. 9.3¢) in the middle period of the short circuit, and
finally to X, in steady state (Fig. 9.3a). The reactance presented by the machine
in the initial period of the short circuit, i.e.

' 1
X + - X" 9.5
WX A UX A UK, s

is called the subtransient reactance of the machine. While the reactance
effective after the damper winding currents have died out, i.e.

X’tl = XI + (X{l I X/) (96)
is called the transient reactance of the machine. Of course, the reactance under
steady conditions is the synchronous reactance of the machine. Obviously X’} <
X/, < X,. The machine thus offers a time-varying reactance which changes from
X' to X!, and finally to X,,.

Subtransient period

Transient period
' Steady state period

Symmetrical short circuit current ———

Actual envelope

Extrapolation of
steady value

Extrapolation of transient envelope

(a) Symmetrical short circuit armature current in synchronous machine

Fig. 9.4 (Contd.)

*Unity turn ratio is assumed here.
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(b) Envelope of synchronous machine symmetrical short circuit current

Fig. 9.4

If we examine the oscillogram of the short circuit current of a synchronous
machine after the DC oft-set currents have been removed from it, we will find
the current wave shape as given in Fig. 9.4a. The envelope of the current wave
shape is plotted in Fig. 9.4b. The short circuit current can be divided into three
periods—initial subtransient period when the current is large as the machine
offers subtransient reactance, the middle transient period where the machine
offers transient reactance, and finally the steady state penod when the machine
offers synchronous reactance.

If the transient envelope is extrapolated backwards in time, the difference
between the transient and subtransient envelopes is the current A" (corre-
sponding to the damper winding current) which decays fast according to the
damper winding time constant. Similarly, the difference Ai’ between the steady
state and transient envelopes decays in accordance with the field time constant.

In terms of the oscillogram, the currents and reactances discussed above, we
can write

\E.|
= Lo = (9.7a)
V2 X,
b |E,
=22 = (9.7b)
2 X,
\E,|
ocC g .
| = NS 9.7¢)

where
|It = steady state current (rms)
!I'l = transient current (rms) excluding DC component
11| = subtransient current (rms) excluding DC component
X, = direct axis synchronous reactance



AR

334

e § ——
Z
Q
Q
[+)
=
=]
0
o
£
D
-
2}

S
28
D
3
>
=)

D

<
4]

»

X} = direct axis subtransient reactance
|E,I = per phase no load voltage (rms)
0a,0b,0c = intercepts shown in Figs. 9.4a and b.

The intercept Ob for finding transient reactance can be determined

accurately by means of a logarithmic plot. Both A" and A# decay
exponentially as

A" = Aif exp (- t/1,,)
Ai' = Ail) exp (- tl7y)

where 7, and 7y are respectively damper, and field winding time constants with
Taw < Tp Attime t s 7,, A" practically dies out and we can write

log (Ai"+At")

t> T = log A" =— Aif /7

2]

log(A#"+ Ai')—»
o
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Y

Fig. 9.5

The plot of log (Ai" + Ai') versus time for ¢ » 74, therefore, becomes a
straight line with a slope of (- Ai’olq) as shown in Fig. 9.5. As the straight
line portion of the plot is extrapolated ( straight line extrapolation is much more
accurate than, the exponential extrapolation of Fig. 9.4), the intercept
corresponding to t = 0 is

Al = Qi exp(~t/ 75 )|,_, = Al = ob

Table 9.1 Typical values of synchronous machine reactances
(All values expressed in pu of rated MVA)

Synchronous
Type of Turbo-alternator Salient pole compensator  Synchronous
machine (Turbine (Hydroelectric) (Condenser/ motors*
generator) capacitor)
X, (or X,) 1.00-2.0 0.6-1.5 1.5-12.5 0.8-1.10
X, 0.9-1.5 0.4-1.0 0.95-1.5 0.65-0.8
X 0.12-0.35 0.2-0.5 0.3-0.6 0.3-0.35
X, 0.1-0.25 0.13-0.35 0.18-0.38 0.18-0.2
X, =X, =X, 0.17-0.37 0.19-0.35
X, 0.04-0.14 0.02-0.2 0.025-0.16 0.05-0.07

- 0.003-0.008 0.003-0.015 0.004-0.01 0.003-0.012

%, = AC resistance of the armature winding per phase.
* High-speed units tend to have low reactance and low speed units high reactance.
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Though the machine reactances are depende

"
Felable Al GCplnGlnl

t upon magnetic saturation
(corresponding to excitation), the values of reactances normally lie within
certain predictable limits for different types of machines. Table 9.1 gives
typical values of machine reactances which can be used in fault calculations and
in stability studies.

Normally both generator and motor subtransient reactances are used to
determine the momentary current flowing on occurrence of a short circuit. To
decide the interrupting capacity of circuit breakers, except those which open
instantaneously, subtransient reactance is used for generators and transient
reactance for synchronous motors. As we shall see later the transient reactances
are used for stability studies.

The machine model to be employed when the short circuit takes place from

loaded conditions will be explained in Sec. 9.4,

The method of computing short circuit currents is illustrated through
examples given below.

For the radial network shown in Fig. 9.6, a three-phase fault occurs at F.
Determine the fault current and the line voltage at 11 kV bus under fault
conditions.

10 MVA 10 MVA N
15% reactance @ @ 12.5% reactance '

1 kV—iﬁL
o

]‘C": Transformer NO 1: 10 MVA, 10% reactance

© Overhead line : 30 km, z = (0.27 +0.36) 2/ km

,
S

ey

v v Transformer NO 2: 5 MVA, 8% reactance

z=(0.135.+0.08) 2/ km
“3kmoable 2 ©
Fig. 9.6 Radial network for Example 9.1

Solution Select a system base of 100 MVA.

Voltage bases are: 11 kV-in generators, 33 kV for overhead line and 6.6 kV
for cable.

Reactance of G = j&lzl(}p— = jL.5 pu
Reactance of G, = jﬂszXHE = j1.25 pu
Reactance of T, = j—O'l—Tolﬂ = j1.0 pu

Ties
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.0.08x100

Reactance of T, = = j1.6 pu
Z J 5 J v
Overhead line impedance = 2 in g N?,AB““
(kVBase )
_ 30x(0.27+j0.36) x 100
(33)*
= (0.744 + j0.99) pu
Cable impedance = ~ 2122 ?6]60)'208) x100 _ 0.93 + 0.55) pu

Circuit model of the system for fault calculations is shown in Fig. 9.7. Since
the system is on no load prior to occurrence of the fault, the voltages of the two
generators are identical (in phase and magnitude) and are equal to 1 pu. The
generator circuit can thus be replaced by a single voltage source in series with
the parallel combination of generator reactances as shown.

& i
7~ %) .
/200 s / 11 kV bus
(@AY e .
|‘ = l 1.0 (0.744+j0.99) j1.6  (0.93 +0.55)
‘, L J7Ggsy L1 cEnsy L F
"/\‘L 1£0° j12s | ) T Line T2 Cable
R v 52) el D R R
// o e
/ = .
I
\
\ j1.5
5, 1200 [ 000 |
P i S
S ‘ j1.25 |
! CHo6N !
Fig. 9.7

Total impedance = (j1.5 Il j1.25) + (i1.0) + (0.744 + j0.99) + (j1.6) +
(093 + j0.55)

1.674 + j4.82 =5.1 £ 70.8° pu

1]

170
Igp = —==— =0.196 £ - 70.8° pu
€= 51708 P
100 x10°
e = a6

I =0.196 x 8,750 = 1,715 A
Total impedance between F and 11 kV bus
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(0.93 + j055) + (j1.6) + (0.744 + j0.99) + (j1.0)
1674 + jh14 = 443 £76.8° pu
Voltage at 11 kV bus = 443 £67.8° x 0.196 Z— 70.8°

= 0.88 /£ =3°pu=0.88 x 11 = 9.68 kV

|'"” : Y
Examp!e 9.2

A 25 MVA, 11 kV generator with X} = 20% is connected through a
transformer, line and a transformer to a bus that supplies three identical motors
as shown in Fig. 9.8. Each motor has X} = 25% and X} = 30% on a base of
5 MVA, 6.6 kV. The three-phase rating of the step-up transformer is 25 MVA,
11/66 kV with a leakage reactance of 10% and that of the step-down
transformer is 25 MVA, 66/6.6 kV with a leakage reactance of 10%. The bus
voltage at the motors is 6.6 kV when a three-phase fault occurs at the point F.
For the specified fault, calculate

(a) the subtransient current in the fault,
(b) the subtransient current in the breaker B,
(c) the momentary current in breaker B, and

(d) the current to be interrupted by breaker B in five cycles.
Given: Reactance of the transmission line = 15% on a base of 25 MVA, 66
kV. Assume that the system is operating on no load when the faul. occurs.

N

A 20 Q ' il
2€ 28 -
:\ p T {}\'\— - — - (7_\\\ %_| M - /'\w
Gon 4 \ ¢ | {_ ! Motors
1166 kV soB6 kv 1P
,,l:’_._{ 3y
B =

Fig. 9.8

Solution Choose a system base of 25 MVA.

For a generator voltage base of 11 kV, line voltage base is 66 kV and motor
voltage base is 6.6 kV.

(a) For each motor

X! = j0.25 x —255 = j1.25 pu
Line, transformers and generator reactances are already given on proper base
values.

The circuit model of the system for fault calculations is given in Fig. 9.9a.
The system being initially on no load, the generator and motor induced emfs are
identical. The circuit can therefore be reduced to that of Fig. 9.9b and then to
Fig. 9.9c. Now
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Iep=3 X ——+—— =— 7422
8¢ Jzs  gilee o Tues iR
25x 1,000

Base current in 6.6 kV circuit = =2,187 A
e S SESY £ WPT ¥ S

Ige=4.22 x 2,187 = 9,229 A
(b) From Fig. 9.9¢, current through circuit breaker B is

1 1
Io(B) = 2x PR S )
s 125 " joss Y

=342 x 2,187 = 7,479.5 A

1125  1£0°

140, jo2

o 015 jo.4

(@)

EEE

— O 000

sc(Circuit breaker)  (c)

Fig. 9.9

(¢) For finding momentary current through the breaker, we must add the
DC off-set current to the symmetrical subtransient curtént obtained in part (b).
Rather than calculating the DC off-set current, allowance is made for it on an
empirical basis. As explained in Sec. 9.5,

Symmetrical Fault Analysis Iis_?ﬁ!i
!

momentary current through breaker B = 1.6 x 7,479.5
= 11,967 A

(d) To compute the current to be interrupted by the breaker, motor
subtransient reactance (X” = jO 25) is now replaced by transient reactance
&= 030

X, (motor) = jO.3 x 252 = jl.5 pu

The reactances of the circuit of Fig. 9.9c now modify to that of Fig. 9.9d.

Current (symmetrical) to be interrupted by the breaker (as shown by arrow)
1 1
=2x ———+— = 3.1515 pu
15 T j0.55 P

A Allowance is made for the DC off-set value by multiplying with a factor of 1.1

(Sec. 9.5). Therefore, the current to be interrupted is
1.1 x 3.1515 x 2,187 = 7,581 A

9.4 SHORT CIRCUIT OF A LOADED SYNCHRONOUS
MACHINE

In the previous article on the short circuit of a synchronous machine, it was
assumed that the machine was operating at no load prior to the occurrence of
short circuit. The analysis of short circuit on a loaded synchronous machine is
complicated and is beyond the scope of this book. We shall, however, present
here the methods of computing short circuit current when short circuit occurs
under loaded conditions.

Figure 9.10 shows the circuit model of a
synchronous generator operating under steady con-
ditions supplying a load current /° to the bus at a
terminal voltage of V. E, is the induced emf under e v
loaded condition and X, is the direct axis synchro-  E,
nous reactance of the machine. When short circuit
occurs at the terminals of this machine, the circuit
model to be used for computing short circuit
current is given in Fig. 9.11a for subtransient

P
Xq

Fig. 9.10 Circuit model of

e : a loaded
current, and in Fig. 9.11b for transient current. The machine
induced emfs to be used in these models are given
by

Ey=V°+ jI'XG (9.8)
E=Vo+ JI°XY, 9.9)

The voltage Eg is known as the voltage behind the subtransient reactance and
the voltage E, is known as the voltage behind the transient reactance. In fact,
if I° is zero (no load case), E; = E, = E,, the no load voltage, in which case
the circuit model reduces to that dlscussed in Sec. 9.3.
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[ # ] [ e

X”d 4 Xy ::'
/ Vo ; Vo
£l \ tl
Ergl ™) | E,( ) }

— T

(a) Circuit model for computing
subtransient current

(b) Circuit model for computing
transient current

Fig. 9.11

Synchronous motors have internal emfs and reactances similar to that of a
generator except that the current direction is reversed. During short circuit
conditions these can be replaced by similar circuit models except that the
voltage behind subtransient/transient reactance is given by

El = Ve jIx (9.10)
E,=V°- jIx, (9.11)

m

Whenever we are dealing with short circuit of an interconnected system, the
synchronous machines (generators and motors) are replaced by their corre-
sponding circuit models having voltage behind subtransient (transient) reac-
tance in series with subtransient (transient) reactance. The rest of the network
being passive remains unchanged.

l Example 9.3

A synchronous generator and a synchronous motor each rated 25 MVA, Il kV
having 15% subtransient reactance are connected through transformers and a
line as shown in Fig. 9.12a. The transformers are rated 25 MVA, 11/66 kV and
66/11 kV with leakage reactance of 10% each. The line has a reactance of 10%
on a base of 25 MVA, 66 kV. The motor is drawing 15 MW at 0.8 power factor
leading and a terminal voltage of 10.6 kV when a symmetrical three-phase fault
occurs at the motor terminals. Find the subtransient current in the generator,
motor and fault.

Gen T1. TE

) Motor
(el Line T

(a) One-line diagram for the system of Example 9.3

o jO.1 j0.1 j0.1 103 i
I rri»"T'?ﬂ’T’a Rl BT R N 0] ; TN { L ]

) ‘ )
£1j0.15 ' /015 0o 45 1 J0.15
1 ‘) v I' ] ~'ﬂ- .J

+ | | I+ +| |+
A \ " i ”
(&

(b) Prefault equivalent circuit

Fig. 9.12

(c) Equivalent circuit during fault
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Solution ~ All reactances are given on a base of 25 MVA and appropriate:

voitages. g

Prefault voltage V°= -l?—f = 0.9636 £0° pu

Load = 15 MW, 0.8 pf leading

- ;g = 0.6 pu, 0.8 pf leading
Prefault current 7°= =05 £36.9° = 0.7783 £ 36.9° pu
0.9636 0.8

Voltage behind subtransient reactance (generator)
Ey = 09636 £ 0°+ j0.45 x 0.7783 £ 36.9°
= 0.7536 + j0.28 pu
Voltage behind subtransient reactance (motor)
E; =09636 £ 0°— j0.15 x 0.7783 / 36.9°
= 1.0336 — j0.0933 pu

The prefault equivalent circuit is shown in Fig. 9.12b. Under faulted condi-
ton (Fig. 9.12¢)

0.7536 4 j0.2800 . )
1= 0 = 0.6226 — j1.6746 pu
1.0336 — j0.0933
pr= B0230=700933 o6 - 76.8906 pu
j0.15

Current in fault

P=1"+ 1" =~ j8.5653 pu

Base current (gen/motor) =

Now
Iy = 1,312.0 (0.6226 — j1.6746) = (816.4 — j2,197.4) A
Ly = 1,312.2 (- 0.6226 - j6.8906) = (- 816.2 — j9.041.8) A ¢
Y=—j11239 A

Shert Circuit (SC) Current Computation through the
Thevenin Theorem

An alternate method of computing short circuit currents is through the
application of the Thevenin theorem. This method is faster and easily adopted
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to systematic computation for large networks. Whilelthe method is perfectly
it 1s illustrated here through a simple example.
seneral, it is illustrated here throug . .
‘ Consider a synchronous generator feeding a synchronous mgtf)r ove; at i;r;e.
Figure 9.13a shows the circuit model of the system under conditions 0- st v ;/
load. Fault computations are to be made for a fault at F, at the mgto; Fem;;rg b.
As a first step the circuit model is replaced by the one ’shown‘m ig. ~g;nce;
wherein the synchronous machines are represented by tl}e}r traniignt rejii: pees
i actances i sient currents are of interest) in series
or subtransient reactances if subtranmen. est)
5oltages behind transient reactances. This change does not disturb the prefault
o o t Fv). .
current /° and prefault voltage V° (al : o ' .
As seen from FG the Thevenin equivalent circuit of Fig. 9.131? is d;awn in
Fig. 9.13c. It comprises prefault voltage V°in series with f}hedpasswi T ;:;::rn;g
. 9.13c. ' ! i o
i ticed that the prefault current 0es no
impedance network. It is no . : coes not appeat in
i >venin impedance network. It is therefore to be ren
the passive Thevenin impedance ne ¢  tha
thispcurrent must be accounted for by superposition after the SC solution
i i ivalent.
obtained through use of the Thevenin equ o | |
Consider now a fault at / through an impedance z/ l*lgme 9.13d sll\(;vws(:l;i
Thevenin equivalent of the system feeding the fault impedance. We

immediately write

G

=Y 9.12)
X, + 2"
Current caused by fault in generator circuit
Al = Xim r 9.13)
(Xl +X+ X,
g0 | { 00
I\ T < ; (i ’)\ X
5 ; ! . ’ j ,dm
,? Xdg l{/n {: Xom 2 X'dg 1 !
+ [+ +| ’ +‘ )
L JE, L JEn { | JEZ { | JE,
l |
(a) G (b) G
Fr, -
gt ve( )
X V"(\IJ An'g N X - I _Afm (] ;
—f S e
x X' <3 Xgm ¢ X1n | X’dg:j i"—'gXIdm
g P, i (}’ Ref bus [

(Thevenin reactance)

(d)
(c) ‘ .
Fig. 9.13 Computation of SC current by the Thevenin equivatent
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Current caused by fault in motor circuit
Xg +X
= "% &
Xim +X+ X1,

Postfault currents and voltages are obtained as follows by superposition:

Al

m

’f (9.14)

H=1+ AL

I =~ I°+ Al (in the direction of AZ) ©9.15)
Postfault voltage

V= Vor Xty = ver av ©.16)

where AV = — JX1id” is the voltage of the fault point F/ on the Thevenin passive
network (with respect to the reference bus G) caused by the flow of fault
current /.

An observation can be made here, Since the prefault current flowing out of
fault point F is always zero, the postfault current out of F is independent of load
for a given prefault voltage at F.

The above approach to SC computation is summarized in the following four
steps:

Step 1: Obtain steady state solution of loaded system (load flow study).
Step 2: Replace reactances of synchronous machines by their subtransient/
transient values. Short circuit al] emf sources. The result is the passive
Thevenin network.

Step 3:  Excite the passive network of Step 2 at the fault point by negative of
prefault voltage (see Fig. 9.13d) in series with the fault impedance. Compute
voltages and currents at all points of interest, :

Step 4:  Postfault currents and voltages are obtained by adding results of Steps
1 and 3.

The following assumptions can be safely made in SC computations leading
to considerable computational simplification:

Assumption 1:  All prefault voltage magnitudes are 1 pu.
Assumption 2:  All prefault currents are zero,

The first assumption is quite close to actual conditions as under normal
operation all voltages (pu) are nearly unity.

The changes in current caused by short + ]
circuit are quite large, of the order of 10-20 VOQ_J_ !
pu and are purely reactive; whereas the Al j0.3 Al
prefault load currents are almost purely real. [ F’m\‘ﬁ*} 4-’

G|

Hence the total postfauit current which is the ;-13 j0.15 20415

result of the two currents can be taken in % c o

magnitude equal to the larger component R = J

(caused by the fault). This Justifies assump- e

tion 2. Fig. 9.14 Fis the fault point on
Let us illustrate the above method by the passive Thevenin

fecalculating the results of Example 9.3. network
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i tfault
The circuit model for the system of Example 9.3 for computation of postfau

L E 014,

condition is shown in Fig. 9. |
7 % = 0.9636x j0.60 ~ _ j8.565 pu
= 01s1j045)  jO15x j045

Change in generator current due to fault,

. jO.15 5141
Al =— j8.565 x-L=== =— j2.141 pu
s j8.565 70.60

Change in motor current due to fault,

/0.45 .
Al = - j8.565 % 176 = — j6.424 pu

aIlSlent
[() these Changes we add the prefault Current to Obtaln the Subtl‘

ent in machines. Thus '
- I'=1°+ Al, = (0623 - j1.674) pu
g .
"=—1°+ Al, = (- 0.623 - j6.891) pu
. : already.
i nd should be) as calculatec.i '
e akrle ti,l etliirsneséilved Example 9.3 alternatively through ttlhfi 'f(ilre\;z?;r;
the\(zZm aavnd superposition. This, indeed, is a powerful metho

networks.
9.5 SELECTION OF CIRCUIT BREAKERS

l | { reuit h C. k(,l ratimgs l ch requlr ﬂl(, com utation O »;C Cllxle]lt
will l I q C on l) l
h(/ cireul réa u 2:\ j
wO O y y ¥ ) g
S yIIlIIletI 1Cal SC CUIIGIII 1S Obtalned by llSlIlg Suth aIlSICI]t reactances f()I
S yIthIQIIOUS “ld(rlll“eS. M()Illellldly CUIlellt (II[lS) 18 thell Calculated by

i i acc for
multiplying the symmetrical momentary current by a factor of 1.6 to account
= el -(') fl PCrZift_stit gzrﬁ?;rupted is computed by using subtransient

Symmetr‘“"‘l 5 ut;ronou% generators and transient reactances for sync{h;gn;ntl(s)
rotore s t:in styn; motoré are neglected*. The DC off-set value to l?e adde "
e Baio e o 1Ont to be interrupted is accounted for by multiplying
O metic lcgréecurrent by a factor as tabulated below:

symimetrica
Circuit Breaker Speed — Multiplying Factor
8 cycles or slower 1.0
5 cycles };
3 cycles ]
2 cycles 1.4

*In some
circuit have been accounted for.

recer i i i uring a short
recent attempts, currents contributed by induction motors during
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i
If SC MVA (explained below) is more than 500, the above multiplying factors

are increased by 0.1 each. The multiplying factor for air breakers rated 600 V
or lower is 1.25.

The current that a circuit breaker can interrupt is inversely proportional to

the operating voltage over a certain range, i.e.
Amperes at operating voltage
= amperes at rated voltage x rated voltage/operating voltage

Of course, operating voltage cannot exceed the maximum design value. Also,
no matter how low the voltage is, the rated interrupting current cannot exceed
the rated maximum interrupting current. Over this range of voltages, the
product of operating voltage and interrupting current is constant. It is therefore

logical as well as convenient to express the circuit breaker rating in terms of
SC MVA that can be interrupted, defined as ‘

Rated interrupting MVA (three-phase) capacity

= ﬁl V(ﬁne)lraled x I (line)lrated interrupting current
where V(line) is in kV and [ (line) is kA.

Thus, instead of computing the SC current to be interrupted, we compute
three-phase SC MVA to be interrupted, where

SC MVA (3-phase) = V3 x prefault line voltage in kV
x SC current in KA.

If voltage and current are in per unit values on a three-phase basis
SC MVA (3-phase) = Wl pretaun X Mlge x (MVA)g. 9.17)

Obviously, rated MVA interrupting capacity of a circuit breaker is to be
more than (or equal to) the SC MVA required to be interrupted.

For the selection of a circuit breaker for a particular location, we must find
the maximum possible SC MVA to be interrupted with respect to type and
location of fault and generating capacity (also synchronous motor load)
connected to the system. A three-phase fault though rare is generally the one
which gives the highest SC MVA and a circuit breaker must be capable of
interrupting it. An exception is an LG (line-to-ground) fault close to a
synchronous generator*. In a simple system the fault location which gives the
highest SC MVA may be obvious but in a large system various possible
locations must be tried out to obtain the highest SC MVA requiring repeated
SC computations. This is illustrated by the examples that follow.

Example 9.4 l
Three 6.6 kV generators A, B and C, each of 10% leakage reactance and MV A
ratings 40, 50 and 25, respectively are interconnected electrically, as shown in

*This will be explained in Chapter 11.
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Fig. 9.15, by a tie bar through current limiting reactors, each of 12% reactance
based upon the rating of the machine to which it is connected. A threc-phase
feeder is supplied from the bus bar of generator A at a line voltage of 6.6 kV.
The feeder has a resistance of 0.06 $/phase and an inductive reactance of 0.12
QV/phase. Estimate the maximum MVA that can be fed into a symmetrical short
circuit at the far end of the feeder.

40 (A)10% 50 (B)10% 25 () 10%
MVA MVA 17) MVA™
[] r
ﬁJ_IL‘ I o .

i

312% ‘5%12% ?12%
| B RO R

) Tie bar
Fig. 9.15

Solution Choose as base 50 MVA, 6.6 kV.
Feeder impedance

= (0'06“;61%)122)"50 ~ (0.069 + j0.138) pu

Gen A reactance = 9-17?:;9— = 0.125 pu

Gen B reactance = 0.1 pu

Gen C reactance = 0.1 x % =0.2 pu

; 5
Reactor A reactance = 9 ]2; 0

= (.15 pu
Reactor B reactance = 0.12 pu

0.02%30 _ 9,24 pu
25

CL'Q' r'L‘01 2 j0.2
0j0.125 <} j0. géj ' ;
L
)

0=1.0° | |Z
[ L

7i 4 é = v
IS A il S P

Reactor C reactance =

+

F

1+
vo=1£0°(_ )

|

|

| T
L .i—qu

(0.069 +j0.138)
(a) (b)

— AN

Fig. 9.16

Symmetrical Fault Analysis ﬁ

Assume no load prefault conditions, i.e. prefault currents are zero. Postfault
cum':nts can then be calculated by the circuit model of Fig. 9.16a corresponding
to Fig. 9.13d. The circuit is easily reduced to that of Fig. 9.16b, where

Z = (0.069 + j0.138) + j0.125 Il (jO.15 + j0.22 Il j0.44)
=0.069 + j0.226 = 0.236£73°

SC MVA = vof= vatl) = L pu (since Vo= 1 pu)
z)" 2
1
= X (MVAJpy

=90, 212 MVA

0.236

Consider the 4-bus system of Fig. 9.17. Buses 1 and 2 are generator buses and
3 and 4 are load buses. The generators are rated 11 kV, 100 MVA, with
transient reactance of 10% each. Both the transformers are 11/110 kV, 100
MVA with a leakage reactance of 5%. The reactances of the lines to a base of
100 MVA, 110 kV are indicated on the figure. Obtain the short circuit solution
for a three-phase solid fault on bus 4 (load bus). .
Assume prefault voltages to be 1 pu and prefault currents to be zero.

Gy
1T1 e 111110 kY

j0.15 _ __‘“ 3
| I
jo| 10.2_ jo.1
| |
||
4 j0.15 111,
/ Fault T2 == 11110 kV

Fig. 9.17 Four-bus system of Example 9.5

Solution Changes in voltages and currents caused by a short circuit can be
calculated from the circuit model of Fig. 9.18. Fault current [’ is calculated by
systematic network reduction as in Fig. 9.19:
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3
lff.j j0.15
o/ .
! 0.15
T - B, i‘i‘(‘i\ T 3
f14¢' 8o I
L — pad Y
- T, 40 < 1
jo.1¢ ) 12 /;00 e ,();‘\/ X
? LR } s
I N
4 gl j015 iy 2
[ Vi =10pu Rt
ot 015
."H iz’— 0
\
Fig. 9.18
Cb ' = j0.15 —— .
/018 & | |_
) R 19
1 J0.11 2 j0.45. 4 [ le‘ 1j015
[ T m 24 >
0.4
2 ( L Byse )
o " G
\‘ jo15 joile 9015
4 N
(vi=10 (@ ®) (e =10
* Wf ++/f
(c) (d) (e)
— s B
3 2 j0.13560
j0.15 -i-i,ih j0455 lv'z j0.18055 « :j,lh !2[;—7:;10-19583 ?,0.13
i | | — _| EIR Vg =10
ke, a‘f'i = +[
j0.03055 ¢ o j0.04583 =} j0.04166 "
2) =l
4 j0.04166 (vg=10
[ +
¥ t
L Ve =1.0

+*If

Fig. 9.19 Systematic reduction of the network of Fig. 9.18
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F
From Fig. 9.19, we get directly the fault current as

e —10 ___ 737463 pu

Jj0.13560

From Fig. 9.19d, it is easy to see that

=1 x JOI983 s 83701 pu

Jj0.37638
=1, x 1018055 _ 353762 pu
- J0.37638

Let us now compute the voltage changes for buses 1, 2 and 3. From Fig.
9.19b, we give

AVy =0 - (j0.15) (- j3.83701) = — 0.57555 pu
AV, =0 - (j0.15) (- j3.53762) = - 0.53064 pu

Now
V/ =1+ AV, = 042445 pu
Vi =1+ AV, = 0.46936 pu
Iyt
1,,= -r;--Y-L_--Y?W = j0.17964 pu
T jOUS+ 0.1
Now

AV,

0 = [(O.15) (- j3.83701) + (j0.15) (j0.17964)]
= — (.548060 pu
V/i= 1 - 0.54860 = 0.4514 pu
V=
The determination of currents in the remaining lines is left as an exercise to
the reader.
Short circuit study is complete with the computation of SC MVA at bus 4.
(SC MVA), = 7.37463 x 100 = 737.463 MVA
It is obvious that the heuristic network reduction procedure adopted above is
not practical for a real power network of even moderate size. It is, therefore,
essential to adopt a suitable algorithm for carrying out short circuit study on a
digital computer. This is discussed in Sec. 9.6.

9.6 ALGORITHM FOR SHORT CIRCUIT STUDIES

So far we have carried out short circuit calculations for simple systems whose
passive networks can be easily reduced. In this section we extend our study to
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large systems. In order to apply the four steps of short circuit computation
developed earlier to large systems, it is necessary to evolve a systematic general
algorithm so that a digital computer can be used.

L e

.

1 n
| System } =
H o=

( \ Gen 1

Ve

(> Genn

[ A ki
( )Gen2 ( Jeenr

Fig. 9.20 n-bus system under steady load

: Consider an n-bus system shown schematically in Fig. 9.20 operating at steady
j load. The first step towards short circuit computation is to obtain prefault
voltages at all buses and currents in all lines through a load flow study. Let us

indicate the prefault bus voltage vector as

0
Vs = | 2 . ‘ (9.18)

Let us assume that the rth bus is faulted through a fault impedance Z/. The
postfault bus voltage vector will be given by

; Vlfws = Vgus + A4V (9.19)
where AV is the vector of changes in bus voltages caused by the fault.

As step 2, we drawn the passive Thevenin network of the system with
generators replaced by transient/subtransient reactances with their emfs shorted

(Fig. 9.21).
e e
|_W 5 rh 7
=] =i —}.\I I r_',-J
Sxe T Dwvil G
( r..:éx,dz +|i L:‘:X’d,- l
| |
1

Fig. 9.21  Network of the system of Fig. 9.20 for computing changes in
bus voltages caused by the fault
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. fﬁ\s pz_ztrhg%fp 3 we now excite the passive Thevenin network with — V° in
ries wi as in Fig. 9.21. The vector . & ises &
seties w g or AV comprises the bus voltages of this

Now )
AV =Zgys”
where —
Zy . Z,
Zgus=1| : ! | = bus impedance matrix of the (9.21)
Zy ... Z, | passive Thevenin network

J7 = bus current injection vector

Since the network is injected with current — 7/ only at the rth bus, we have

0 :
0
= =y (9.22)
0 i
Substituting Eq. (9.22) in Eq. (9.20), we have for the rth bus
AV, =~z 1
By step 4, the voltagé at the rth bus under fault is
VvIi=v + avo - Ve -z I/ (9.23)
However, this voltage must equal
vi= 7717 (9.24)

We have from Egs. (9-23) and (9.24)
ZW=v_z

or V= L
Z, +27 (9.25)
At the ith bus (from Eqs (9.20) and (9.22))
av,=- z. I’
VI=Vi-z0,i=1,2 . »n (9.26)

substituting for / from Eq. (9.25), we have

V{: VO_L 0
e A (9.27)
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For i = r in Eq. (9.27)
3 7! 0
W=—=%2__V (9.28
' er + Zf )

In the above relationship V,.O’s, the prefault bus voltages are assumed to be
known from a load flow study. Zp s matrix of the short-circuit study network
of Fig. 9.21 can be obtained by the inversion of its Ypys matrix as in Example
9.6 or the Zg,s building algorithm presented in Section 9.7. It should be
observed here that the SC study network of Fig. 9.21 is different from the
corresponding load flow study network by the fact that the shunt branches
corresponding to the generator reactances do not appear in the load flow study
network. Further, in formulating the SC study network, the load impedances are
ignored, these being very much larger than the impedances of lines and
generators. Of course synchronous motors must be included in Zg ;5 formula-
tion for the SC study.

Postfault currents in lines are given by

Py=Y; (V= v (9:29)
For calculation of postfault generator current, examine Figs. 9.22(a) and (b).
From the load flow study (Fig. 9.22(a))
Prefault generator output = Pg; + jQg;

° I i

X’Ga Gi { X/Gf Gi ‘
5 = 'o"ai'\—-f‘ =
] ]

Eai( ) v Ea( ) VI
(a) (b)
Fig. 9.22
P — O
g = vaj—Qi; (prefault generator output = Py, + jQs) (9.30)
E'g=V+ X cl'; 931

From the SC study, Vf,- is obtained. It then follows from Fig. 9.22(b) that
A
Gi i

9.32
JX'Gi ©-32)

I fGi =
Example 9.6

To illustrate the algorithm discussed above, we shall recompute the short circuit
solution for Example 9.5 which was solved earlier using the network reduction
technique.
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First of all the bus admittance matrix for the network of Fig. 9.18 is formed
as follows:

Symmetrical Fa

1 1 1 1
Y, = & fom e = = 28
W= Tos T oas T on t0n T %A
-1
Y, = Yy = —L = j5.000
12= 124 02 i)
Y= ¥y = L = j6.667
015
-1
V= Yo = g5 =710.000
i 1 1 1
2% 015 ' jo1s- jor ' joz2 |’
I
Y, = Y, = — = j10.000
23 32 0.1 J
Vo= Yp= —1 = j6.667
j0.15
Vo= —— 4+ = 16667
B S01s ¢ jo1 IO
R
Y= 4+ = 16667
“= o1 jors !

[—j28333  j5.000  j6.667  j10.000
.. j5.000 —;28333  j10.000  j6.667
BUS™ 1 je.667  j10.000 —jl16.667  j0.000
| j10.000  j6.667  j0.000 —j16.667

By inversion we get Zgpjg as

[j0.0903  j0.0597 j0.0719  j0.0780
S, j0.0597  j0.0903  j0.0780  j0.0719
BUS ™| j0.0719  j0.0780 j0.1356  j0.0743
| j0.0780  j0.0719  j0.0743  j0.1356

Now, the postfault bus voltages can be obtained using Eq. (9.27) as

Vi= %~y
Zyy ! :
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The prefault condition being no load, V= V3= v%=v%=1pu

vi=10- /00780 10 =04248 pu
701356
sz = V20 —;ZAV4O i
Zy
0 29719 10 = 0.4698 pu
j0.1356
vi=v}- ?4 A
44
_10- %978 62 04521 pu
701356

Vi=00
Using Eq. (9.25) we can obtain the fault current as

1f— 1000
j0.1356

These values agree with those obtained earlier in Example 9.5. Let us also
calculate the short circuit current in lines 1-3, 1-2, 1-4, 2-4 and 2-3.

= - j7.37463 pu

W -V _ 0424804521

= = j0.182 pu
2= T 7015 SRISER
f _yf _
p WV 04248204698 _ 05,
- 702
Sy _
= 0TV Z 042480 _ a8 pu
21 jo.1
f_yf _
o= Ve _O0H6B-0 _ _ 550 o,
o j0.15
f_v. S —
po VY 046804521 _ o0

0 J.01

For the example on hand this method may appear more involved compared
to the heuristic network reduction method employed in Example 9.5. This,
however, is a systematic method and can be easily adopted on the digital
computer for practical networks of large size. Further, another important feature
of the method is that having computed Zgyg, We can at once obtain all the
required short circuit data for a fault on any bus. For example, in this particular
system, the fault current for a fault on bus 1 (or bus 2) will be

Symmetrical Fault Analysis

[ra 1000 100 __ 41074197 pu
Z,(or Zy)  j0.0903

9.7 Zgys FORMULATION

By Inventing Ygys

Jeus = Vaus Vaus
or Vaus = [Yaus]™ Jsus = Zsus Jaus (9.33)

or Zgus = Ypus] ™

The sparsity of Y5 may be retained by using an efficient inversion technique
[1] and nodal impedance matrix can then be calculated directly from the
factorized admittance matrix. This is beyond the scope of this book.

Current Injection Technique

Equation (9.33) can be written in the expanded form
Vi=Znh +Zphh +...+ 2,1, (9.34)
Vo=2Zo 5 + 2015 + ...+ 2,1,

Vn = anll + Zn'ZIl +.t Znnln
It immediately follows from Eq. (9.34) that

Vi
i TR 03
lj =0
Also Z; = Z;;; (Zgyg is a symmetrical matrix).
As per Eq. (9.35) if a unit current is injected at bus (node) j, while the other
buses are kept open circuited, the bus voltages yield the values of the jth column
of Zgys. However, no organized computerizable techniques are possible for

finding the bus voltages. The technique had utility in AC Network Analyzers

‘where the bus voltages could be read by a voltmeter.

Example 97

Consider the network of Fig. 9.23(a) with three buses one of which is a
reference. Evaluate Zy .

Solution Inject a unit current at bus 1 keeping bus 2 open circuit, i.e., /; = [,
and I, = 0 as in Fig. 9.22(b). Calculating voltages at buses 1 and 2, we have
Zy=V, =1
Zy=V,=4
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Now let /; = 0 and [, = 1. It similarly follows that
Zp=V, =4=12),
Zy=V,=6
Collecting the above values

7 4
Zyys = 4 6

Because of the above computational procedure, the Zpy;5 matrix is
referred to as the ‘open-circuit impedance matrix’.

Zgyg Building Algorithm

It is a step-by-step programmable technique which proceeds branch by branch.
It has the advantage that any modification of the network does not require
complete rebuilding of Zg .

Consider that Zyyg has been formulated upto a certain stage and another
branch is now added. Then

Z,=branch impedance

Zgys (old)

Upon adding a new branch, one of the following situations is presented.

Zgys (new)

1 14 —— 1 e
T O e ey {2
| 2 l : J 2
| LI'\_. — \VAVAY — AN 1 O——F-ANA ,,,,Tff\/\v,’\f
Vi | 2 A 3 1(H) = L ®
=1 4}* = ——Q 45%— —— 4
Reference .
bus (@) (b)

’
|

|
ST
-G AN
2 3
1(H) 24
L5 | ]
()
Fig. 9.23 Current injection method of computing Zgg

1. Z, is added from a new bus to the reference bus (i.e. a new branch is

added and the dimension of Zgyg goes up by one). This is rype-1
modification.

it Analucic ‘ IR7T
i ANAIYSiS [ A

|

2. Z, is added from a new bus to an old bus (i.e., a new branch is added and
the dimension of Zgy g goes up by one). This is type-2 modification.

3. Z, connects an old bus to the reference branch (i.e., a new loop is formed
but the dimension of Zgy;q does not change). This is fype-3 modification.

4. Z, connects two old buses (i.e., new loop is formed but the dimension of
Zgus does not change). This is type-4 modification.

5. Z, connects two new buses (Zpys remains unaffected in this case). This
situation can be avoided by suitable numbering of buses and from now
onwards will be ignored.

Notation: i, j—old buses; r—reference bus; k—new bus.

Type-1 Modification

Figure 9.24 shows a passive (linear) n-bus network in which branch with
impedance Z, is added to the new bus k and the reference bus r. Now

V= Zli
Z=2Z;,=0;i=12 ...n
Zkk = Zb
Hence
0
Zpys (0ld) :
Zpys (new) = B 3 (9.36)
0 0|z,
10 ]
ne — =)
o,
) | Passive linear
jo—— n-bus network
k> _‘|-—‘ ’k
v |z
rT o Lz

Fig. 9.24 - Type-1 modification
Type-2 Modification

Z, is added from new bus  to the old bus j as in Fig. 9.25. It follows from this
figure that
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10———
no——m7m
TGS -
b b+ ‘ Passive linear
jo =i I n-bus network
2 ]

Fig. 9.25 Type-2 modification

Vi=Zly + V;
=2yl + Zyly + Zyly + ...+ Z L+ L) + .. + Z,1,
Rearranging,
Vi=Zylh + Zpl) + ... + Zili+ ..+ Z,1, + (Z; + ZPI,
Consequently
Z;
ZyJ
Zpus (new) = | Zyyg(old) 9.37)
Z .

n

2% Zn | 237 %
Type-3 Modification

Z,, connects an old bus (j) to the reference bus (r) as in Fig. 9.26. This case
follows from Fig. 9.25 by connecting bus £ to the reference bus 7, i.e. by setting

Ve =0.
o |
¢ — B } Passive
Iinear
o= T ﬂ g;;tt’\t]vscl)rk

Fig. 9.26 Type-3 modification

Thus
‘/] le 11
V; Zj b
— | Zgys(old) | 5 (9.38)
Vv Zn' [n

0 ZyZj. - Zy, | Zj+2, | 1,

Eliminate I, in the set of equations contained in the matrix operation (9.38),
0=2,I,+ Zphh + ... + Zyl, + (Z; + Zpl,

@l + Zohy + -+ Zl) (9.39)

or I,=—
ZJ'J' ~Z

Now
Vi=Zoly + Zply + ... + Zyl, + Zyl, (9.40)

Substituting Eq. (9.40) in Eq. (9.39)

1 1
Nz Yz 7+ Zy - ——(Z,Z,) |]
v [2.1 ij+Zb( i 11)]1 l: 2Tz, i2) |2

1
+...+{Zm——z—jjrz:(zij Zjn):l 1, (9.41)
Equation (9.37) can be written in matrix form as
;| |
Zij -+ Zb Z

Type-4 Modification

Z, connects two old buses as in Fig. 9.27. Equations can be written as follows
for all the network buses.

[
10—

|
|
no—————— i
(i + i) ‘
jo—— G
L= Passive linear
o (j ﬁ_) | n-bus network ‘
B ] | .
zb |
— y

Fig. 9.27 Type-4 modification

Vi= Zoly + Zoply + oo+ Zy G+ 1)+ Z; (= 1) + ot Z,1,(9.43)
Similar equations follow for other buses.
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The voltages of the buses i and j are, however, constrained by the equation
(Fig. 9.27)

Vi= Zl + V, (9.44)
or Zjlll + Z]-ZI2 o+ Zy (L + )+ Z; (Ij— Iy+ ... + Zjnl,,
=Zh+ 2+ 2oL+ o+ 2+ )+ ZL - 1)+ ... + 7.,
Rearranging o
0=, -Z) L+ ... +(Z; - Zi) I+ (Z;— Zp I
ot (2~ Z) I+ (Zy+ Z; + Zi—Z;- Zy) I, (9.45)
Collecting equations similar to Eq. (9.43) and Eq. (9.45) we can write
[V ] "
1 [I
V, (Zy; = Zy;)
- 7 | I
: BUS :
= ' (9.46)
Vn (Zm' - an) i
= (Zin=Z)y) A2y~ Z;) | Zy+2Z; +2; -2Z; | =
10 | 1 |

Eliminating 7, in Eq. (9.46) on lines similar to what was done in Type-2
modification, it follows that

| Zli - le
Zys (new) = Zyys (old) -
e 7.
Ziy = Z)) .. Z, - Zy)) (9.47)

With the use of four relationships Eqgs (9.36), (9.37), (9.42) and (9.47) bus
impedance matrix can be built by a step-by-step procedure (bringing in one
branch at a time) as illustrated in Example 9.8. This procedure being a
mechanical one can be easily computerized.

When the network undergoes changes, the modification procedures can be
employed to revise the bus impedance matrix of the network. The opening of
a line (Z;) is equivalent to adding a branch in parallel to it with impedance
- Z;; (see Example 9.8).

| Seample 9.8

For the 3-bus network shown in Fig. 9.28 build Zgs.
0.1

1 0.1 2
[ ‘e — T,,, o ,/?j?j‘() S
| i
! \
=2 DI e RN <
0.25 > 01 3 o1 &2, 0.25

bl

| 4

Refbus r
Fig. 9.28

Solution
Step 1: Add branch z,, = 0.25 (from bus 1 (new) to bus r)

zgus = 10.25] @)
Step 2: Add branch z,; = 0.1 (from bus 2 (new) to bus 1 (old)); type-2

modification

'ro.2s 025 .
Zpus [ } (i)

~,l025 035
Step 3: Add branch z;3 = 0.1 (from bus 3 (new) to bus 1 (old)); type-2
modification
025 025 025
Zgus= 1025 035 025 (iii)
025 025 035
Step 4: Add branch z,, (from bus 2 (old) to bus r); type-3 modification

025 025 025 1 0.25
- 25— ————10.35| [0.25 0.35 0.25]
Zyus = |025 035 0 TTRTNT
025 025 035 0.25

0.1458 0.1042  0.1458
=10.1042 0.1458 0.1042
0.1458 0.1042  0.2458
Step 5: Add branch z,; = 0.1 (from bus 2 (old) to bus 3 (old)): type-4
modification
0.1458 0.1042  0.1458
Zgyus = |0.1042  0.1458  0.1042 |-
0.1458  0.1042  0.2458

|
0.1+ 0.1458+0.2458 — 2% 0.1042

-0.1042
0.0417 | [-0.1042 0.0417 —0.0417]

—0.0417

0.1397 0.1103  0.1250
0.1103  0.1397 0.1250
0.1250  0.1250 0.1750
Opening a line (line 3-2): This is equivalent to conne.ct.ing.an impedance — 0.1
between bus 3 (old) and bus 2 (old) i.e. type-4 modification.

I
(—=0.1)+0.1754+0.1397-2x0.125

Zgys = Zgys (old) -
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0.0147
—0.0147 | [0.0147 ~ 0.0147 0.0500]
0.0500

01458 01042 0.1458
=10.1042 01458 0.1042 |; (same as in step 4)
0.1458 0.1042 0.2458

‘;E'Scampie 9;9 ‘

For the power system shown in Fig. 9.29 the pu reactances are shown therein.

For a solid 3-phase fault on bus 3, calculate the following
(a) Fault current
(b) V4 and V4
(¢) 1"12, I/13 and Iéj
) 1%, and 1%,
Assume prefault voltage to be 1 pu.

02 005 5 005 02
. (03 <(<3 l_ 0.1 T r\ C—*-. B
& | 7 I e

S 0.1 \ /0.1 —'
= / =k
s L
Fig. 9.29

Solution The Thevenin passive network for this system is drawn in Fig. 9.28
with its Zgyg given in Eq. (iv) of Example 9.8.
(a) As per Eq. (9.25)

PV
er + Z/
0
or 1= V3A = == j5.71
Zy 0175
(b) As per Eq. (9.26)
Vf= VO— Zir v()

o
<
3
3
@
=4
<
&
m
o
[

Z 0.125
fo 128 | =1 — ===
Now Vi (1 Z., ] 0.175
= 0.286
Z
vi= 1——£) = 0.286
and : ( Zs; .
These two voltages are equal because of the symmetry of the given power

network ‘ _

(c) From Eq. (9.29)
= Y; (v{- V)

1
14, = ——(0.286 - 0.286) = 0
127 jo1 (
1
=— j2.86

(d) As per Eq. (9.32)
15, = _E_’G_lt_v_lf_
G X +iXy

But El;; = 1 pu (prefault no load)
5 _ 1-0.286 — 286

T = j0.2+ j0.05

Similarly
IfGZ = ]2.86

PROBLEMS

9.1 A transmission line of inductance 0.1 H and resistance.S ohms is suc'ldenly
short circuited at ¢ = O at the bar end as shown in Elg. P-9.1. Write thc.
expression for short circuit current i(#). Find approximately the value of
the first current maximum (maximum momentary current). .
[Hint: Assume that the first current maximum occurs i'it th.e same time as
the first current maximum of the symmet_rical §1‘10rt”c1rcu1t current.)
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i 0MH s
| A

|
|

.
©v=1oo sin (100 = t + 15°)

Fig. P-9.1

9.2 (a) What should the instant of short circuit be in Fig. P-9.1 so that the

DC off-set current is zero?

(b) What should the instant of short circuit be in Fig. P-9.1 so that the
DC off-set current is maximum?

9.3 For the system of Fig. 9.8 (Example 9.2) find the symmetrical currents to

be interrupted by circuit breakers A and B for a fault at (i) P and (ii) Q.

9.4 For the system in Fig. P-9.4 the ratings of the various components are:

Generator; 25 MVA, 12.4 kV, 10% subtransient reactance
Motor: 20 MVA, 3.8 kV, 15% subtransient reactance
Transformer 7,: 25 MVA, 11/33 kV, 8% reactance
Transformer Ty: 20 MVA, 33/3.3 kV, 10% reactance

Line: 20 ohms reactance

The system is loaded so that the motor is drawing 15 MW at 0.9 loading
power factor, the motor terminal voltage being 3.1 kV. Find the
subtransient current in generator and motor for a fault at generator bus.
[Hint: Assume a suitable voltage base for the generator. The voltage base
for transformers, line and motor would then be given by the transforma-
tion ratios. For example, if we choose generator voltage base as 11 kV,
the line voltage base is 33 kV and motor voltage base is 3.3 kV. Per unit
reactances are calculated accordingly.]

AR 5¢ Line $¢ o
NS ‘\f— - W T L)
Gen ‘ A

T

Motor

Fig. P-9.4

9.5 Two synchronous motors are connected to the bus of a large system

through a short transmission line as shown in Fig. P-9.5. The ratings of
various components are:

Motors (each): 1 MVA, 440 V, 0.1 pu transient reactance

Line: 0.05 ohm reactance

Large system: Short circuit MVA at its bus at 440 V is 8.
When the motors are operating at 440 V, calculate the short circuit
current (symmetrical) fed into a three-phase fault at motor bus.
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9.7 A generator-transformer unit is connected to a line through

9.8 The system shown i

/ Large system\f e

\ '7 /. Line _* "~ Motors
at— )

\\_B_us A L

Motor bus

Fig. P-9.5

9.6 A synchronous generator rated 500 kVA, 440 V, 0.1 pu subtransient

reactance is supplying a passive load of 400 kW at 0.8 laggirlllg E(;:v;rt
factor. Calculate the initial symmetrical rms current for a three-phas

at generator terminals. N
breaker. The unit ratings are:

Generator: 10 MVA, 6.6 kV; X", =0.1 pu, Xj = 0.20 pu and

X, =0.80 pu

Transformer: 10 MVA, 6.9/33 kV, reactance 0.08 pu
The system is operating no load at a line voltage.of 3.0 kY, ?vher;: a (rihree—
phas;e fault occurs on the line just beyon‘d the circuit breaker. Fin
(a) the initial symmetrical rms current in the I?reaker,
(b) the maximum possible DC off-set current 1n the breaker,

i he breaker,

he momentary current rating of t o ‘

Eg thz current to be interrupted by the breaker and the interrupting kVA,

and ‘
i t circuit current in the breaker.
e Shszig. P-9.8 is delivering 50 MVA at 11 1.(\;“?&8
lagging power factor into a bus which mu?/ be regarded as in )
Particulars of various system components are: )
Generator: 60 MVA, 12 kV, X7 = 0.35 pu
Transformers (each): 80 MVA, 12/66 kV, X = 0.08 pu

Li Reactance 12 ohms, resistanc > negligible.
ine:

Calculate the symmetrical current that the circuit breakers A and B Wl;:
be called upon to interrupt in the event of a three-phase fault occurring

F near the circuit breaker B.

T T2
; <5
3 A e  FB 3¢
(& \'ﬁ %._"\—7 o £ 3¢ Infinite
A\ " = = AN bus
LA g o
Fig. P-0.8
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9.9 A two generator station supplies a feeder through a bus as shown in Fig.
P-9.9. Additional power is fed to the bus through a transformer from a
large system which may be regarded as infinite. A reactor X is included
between the transformer and the bus to limit the SC rupturing capacity of
the feeder circuit breaker B to 333 MVA (fault close to breaker). Find the
inductive reactance of the reactor required. System data are:

Generator G;: 25 MVA, 15% reactance
Generator Gy 50 MVA, 20% reactance
Transformer T 100 MVA; 8% reactance
Transformer T,: 40 MVA; 10% reactance.

Assume that all reactances are given on appropriate voltage bases. Choose
a base of 100 MVA.

G ‘@ ?ﬁxjf‘x T2
Lr_;q’gpgj

Aeyes Ty
gFB
f Feeder

9.10 For the three-phase power network shown in Fig. P-9.10, the ratings of
the various components are:
. I
3¢ Ly

AL

3¢

Fig. P-9.9

Gy

Fig. P-9.10

Generators  G;: 100 MVA, 0.30 pu reactance
G,: 60 MVA, 0.18 pu reactance
Transformers (each): 50 MVA, 0.10 pu reactance
Inductive reactor X: 0.20 pu on a base of 100 MVA
Lines (each): 80 ohms (reactive); neglect resistance.

With the network initially unloaded and a line voltage of 110 kV, a
symmetrical short circuit occurs at mid point F of line L,.

Calculate the short circuit MVA to be interrupted by the circuit

breakers A and B at the ends of the line. What would these values be, if
the reactor X were eliminated? Comment.

L}

9.11 A synchronous generator feeds bus | of a system. A power network feeds
bus 2 of the system. Buses 1 and 2 are connected through a transformer
and a transmission line. Per unit reactances of the various components are:

Generator (connected to bus bar 1) 0.25

Transformer 012

Transmission line 0.28
The power network can be represented by a generator with a reactance
(unknown) in series.

With the generator on no load and with 1.0 pu voltage at each bus
under operating condition, a three-phase short circuit occurring on bus 1
causes a current of 5.0 pu to flow into the fault. Determine the equivalent
reactance of the power network.

9.12 Consider the 3-bus system of Fig. P-9.12. The generators are 100 MVA,
with transient reactance 10% each. Both the transformers are 100 MVA
with a leakage reactance of 5%. The reactance of each of the lines to a
base of 100 MVA, 110 KV is 10%. Obtain the short circuit solution for
a three-phase solid short circuit on bus 3.

Assume prefault voltages to be 1 pu and prefault currents to be zero.

T1ji Ji T2

=~ 11/ 110 kV 11/ 110 kV

1;Hi _ ) ,,,,.an

jO.1

N

Fig. P-0.12

9.13 In the system configuration of Fig. P-9.12, the system impedance data are
given below:
Transient reactance of each generator = 0.15 pu
Leakage reactance of each transformer = 0.05 pu
212 = jO.1, 733 = j0.12, 73 = jO.08 pu
For a solid 3-phase fault on bus 3, find all bus voltages and sc currents
in each component.



368 | Modern Power System Analysis
|
9.14 For the fault (solid) location shown in Fig. P-9.14, find the sc currents in

lines 1.2 and 1.3. Prefault system is on no-load with 1 pu voltage and
prefault currents are zero. Use Zg;,¢ method and compute its elements by
the current injection technique.

@29 0.15 pu reactanci

T2 200
/’)

11/ 110 kV, 0.05 pu reactance

2

f0.1pu
j0.15 pu

N 3
/ Fault T4 ; i&/

11/ 110 kV, 0.5 pu reactance
T

@ 0.1 pu reactance

Fig. P-9.14
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