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VIII INTRODUCTION

Introduction.

Thermodynamics and statistical mechanics are two aspects of the study of
large systems, where we cannot describe the majority of all details of that sys-
tem. Thermodynamics approaches this problem from the observational side. We
perform experiments on macroscopic systems and deduce collective properties
of these systems, independent of the macroscopic details of the system. In ther-
modynamics we start with a few state variables, and discuss relations between
these variables and between the state variables and experimental observations.
Many theorists find this an irrelevant exercise, but I strongly disagree. Thermo-
dynamics is the mathematical language of experimental physics, and the nature
of this language itself puts constraints on what kind of experimental results are
valid.

Nevertheless, true understanding needs the details on a microscopic level.
We need to describe the behavior of all particles in the sample. That is an
impossible task, and we need to resort to some kind of statistical treatment.
Discussions on the foundations of statistical mechanics are very interesting, and
help us understand the limitations of statistical mechanical treatments. This
is analogue to the situation in quantum mechanics. Textbooks in quantum
mechanics sue two approaches. One can simply start from Schrödinger’s equa-
tion and discuss the mathematical techniques needed to solve this equation for
important models. Or one can start with a discussion of the fundamentals of
quantum mechanics and justify the existence of the Schrödinger equation. This
is always done in less depth, because if one wants to go in great depth the discus-
sion starts to touch on topics in philosophy. Again, I find that very interesting,
but most practitioners do not need it.

In statistical mechanics one can do the same. The central role is played by
the partition function, and the rules needed to obtain observable data from the
partition function. If these procedures are done correctly, all limitations set by
thermodynamics are obeyed. In real life, of course, we make approximations,
and then things can go wrong. One very important aspect of that discussion is
the concept of the thermodynamic limit. We never have infinitely large samples,
and hence we see effects due to the finite size, both in space and in time. In
such cases the statistical assumptions made to derive the concept of a partition
function are not valid anymore, and we need alternative models. In many cases
the modifications are small, but sometimes they are large. Quantification of
small and large now depends on intrinsic time and length scales of our system.

The important difference between quantum mechanics and statistical me-
chanics is the fact that for all atomic systems quantum mechanics is obeyed,
but for many systems the finite size of a sample is important. Therefore, in
statistical mechanics it is much more important to understand what the as-
sumptions are, and how they can be wrong. That is why we need to start with
a discussion of the foundations. Again, we can go in greater depth that we
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will do here, which leads to important discussions on the arrow of time, for
example. We will skip that here, but give enough information to understand
the basic ideas.

In order to introduce the partition function one needs to define the entropy.
That can be done in many different ways. It is possible to start from chaos
and Lyaponov exponents. It is possible to start with information theory and
derive a fairness function. Although the latter approach is fundamentally more
sounds, it does not illuminate the ideas one needs to consider when discussing
validity of the theory. Therefore, I follow the old fashioned approach based on
probability of states.

Working with statistical approaches is easier when the states of a system
are labelled by an integer. Continuous variables need some extra prescriptions,
which obscures the mathematics. Therefore we start with quantum mechanical
systems. Counting is easiest. We follow the approach in the textbook by Kittel
and Kroemer, an excellent textbook for further reference. It is aimed at the
undergraduate level. Here we take their ideas, but expand on them. The toy
model is a two state model, because counting states is simplest in that case.
Almost every introduction to quantum statistical mechanics uses some form of
this model, with states labelled up and down, plus and minus, black and white,
occupied and empty, and so on. This basic model is simple enough to show
mathematically how we use the law of large numbers (ergo, the thermodynamic
limit) to arrive at Gaussian distributions. All conclusions follow from there.

The first few chapters discuss the definition of the entropy along these lines
(chapter one), the partition function (chapter two), and the grand partition
function, where the number of particles varies (chapter three). Remember that
in thermodynamics we use N for the number of mols in a material, and use the
constant R, the molar gas constant. In statistical mechanics we use N as the
number of particles, and use kB , the Boltzmann constant.

The first three chapters describe quantum states for the whole system. A
very important application is when the energies of the particles are independent,
in which case we can simplify the calculations enormously. This is done in
chapter four. In chapter five we apply this formalism to the important examples
of non-interacting fermions and bosons. The mathematical background needed
is also explained in the textbook by Huang. This chapter is a must read for
anybody who is going to work in solid state physics.

Chapters six and seven introduce different manners of describing the parti-
tion function. In chapter six we follow the density matrix formalism, which is
very useful for all kinds of theoretical models. In chapter seven we go to classical
statistical mechanics, which is simpler in terms of calculations, and is therefore
often used in models where quantum effects do not play a role.

Life becomes more complicated when phase transitions show up. How do
we know tat a system has a phase transition, how can we estimate the critical
temperature? In chapter eight we use mean field theory and its cousins to relate
values of the critical temperature to parameters in the microscopic model. We
use the Ising model as our example, because it is very simple, yet realistic. We
can actually perform all calculations in the Ising model. It is the best prototype.



X INTRODUCTION

In chapter nine we discuss methods that go beyond the mean field theory,
and that allow us to calculate critical exponents as well. We give a very brief
introduction to renormalization group theory, just enough to understand how
it works. For more detail see the textbook by Plischke and Bergersen.

Missing from these notes is material on computational methods. The Monte
Carlo method is extremely suitable for investigating phase transitions. In its
simplest form it is very easy to implement. There have been many additions,
though, and the Monte Carlo method is very well optimized. But we leave
the discussion to a course on computational physics, since the Monte carlo
method has applications in many other fields as well. Similarly, one can perform
molecular dynamics calculations. Here, too, are many details that one needs to
know in order to perform efficient and reliable calculations. We leave these
discussions to the course on computational physics as well.

History of these notes:

1991 Original notes for first seven chapters written using the program EXP.

1992 Extra notes developed for chapters eight and nine.

2006 Notes of first six chapters converted to LATEX, and significantly updated.

2008 Notes of the remaining chapters converted to LATEX, and significantly up-
dated. Corrections made.



Chapter 1

Foundation of statistical
mechanics.

1.1 Introduction.

What is the difference?

In our study of thermodynamics we have derived relations between state
variables, response functions, and free energies. We have shown how a change
of variables affects the choice of free energy. We derived limitations on response
functions. Finally, we used equations of state to describe experiments. These
equations of state were either derived from experimental results (i.e. a good
guess of the functions) or from models of the free energy. At the heart of all
our derivations was the thermodynamic limit. Our systems have to be large
enough for fluctuations to be unimportant. In addition, we assume that we can
introduce the idea of reservoirs, which are external systems much larger than
the system we are investigating. In a manner of speaking, thermodynamics is
the theory of experimental measurements. It defines what we can measure, and
how results should be related.

In statistical mechanics we will try to derive these equations of state from
microscopic models. It is here where we introduce our knowledge of physics. We
might need a classical description of the motion of atoms in a gas, we could have
to use a standard quantum mechanical theory of the motion of electrons in a
crystal, or we might even have to introduce quantum electrodynamics for nuclei
or quarks. Sometimes relativistic effects have to be included. Depending on the
values of the state variables used to define the system different models could be
needed. For example, at room temperature the electrons in some semiconductors
behave like classical particles, but in other semiconductors quantum mechanical
effects are essential.

1
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Do we have to know why it works?

In a number of ways, statistical mechanics is like quantum mechanics. In the
latter case, if we assume that a system is described by Schrödinger’s equation,
we can very often find the eigenstates and verify that these eigenstates give a
good description of our experiments. Something similar is true in statistical
mechanics. If we take the standard recipe to calculate the partition function
and find all quantities of interest, often there is a good correspondence with
experimental results. Most textbooks in quantum mechanics follow the approach
mentioned above. They spend perhaps one chapter introducing Schrödinger’s
equation and mainly focus on solutions. Some text books covering statistical
mechanics are based on the same philosophy. They essentially introduce the
partition function and then show many techniques to obtain solutions for specific
problems.

Older textbooks on quantum mechanics spent much more time discussing
the fundamentals of quantum mechanics. There are still essential problems
in this area and one often has to be very careful in interpreting derivations
of Schrödinger’s equation. On the other hand, even today most textbooks on
statistical mechanics still try to justify and explain the fundamental assumptions
in statistical mechanics. Again many problems are present, but not always
discussed.

Traditionally, many textbooks start with classical statistical mechanics. It is
certainly true that most of the development of statistical mechanics was based
on classical physics. It turns out, however, that developing statistical mechanics
is much easier in a discussion based on quantum mechanics. The main focus
of this course is on equilibrium statistical mechanics, which means that we
only need the time-independent Schrödinger equation and talk about stationary
states. Non-equilibrium statistical mechanics and transport theory is in general
a harder subject to study.

Extensive and intensive variables.

Thermodynamics is a study of the macroscopic variables of a large system.
The equations typically contain quantities like the volume V of the system, the
number of particles N , the magnetization ~M , etc. As we have seen before,
these quantities are extensive parameters. If the size of the system is increased
by a factor of two, but kept in the same state, all these quantities have to
become twice as large. In other words, if we combine two systems, initially we
have to add the quantities of the separate systems. In the last case, it is of
course possible for the total system to go through some process after contact
is made, resulting in a change of the parameters. The combined system is not
necessarily in equilibrium immediately after contact. Note the very important
difference in the usage of N in thermodynamics and statistical mechanics. In
thermodynamics we use N as the number of moles of material. Correspondingly,
the chemical potential is an energy per mole, and the equations of state use the
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gas constant R. In statistical mechanics we use N for the number of particles
in the system. The chemical potential is now an energy per particle, and the
equations contain the Boltzmann constant kB . We have the following simple
relation, R = NAkB , where NA is Avogadro’s number, the number of particles
in a mole.

If we want to change the volume of a system we have to apply a pressure
p. The work done during a volume change is of the form p∆V . In equilibrium,
the pressure is the same in the whole system, unless other forces are present. If
we take a system in equilibrium and separate it into two parts, both parts will
have the same pressure. Therefore, the pressure is not additive and it is called
an intensive parameter. There is an intensive parameter corresponding to most
extensive parameters (the energy, an extensive parameter, is the exception).
For example, the chemical potential µ is a partner of N , the magnetic field ~H
pairs with ~M , etc. These intensive parameters correspond in many cases to the
external handles we have on a system and which can be used to define the state
of a system. The energy contains terms like pV , µN , and ~H · ~M .

How is temperature defined?

In thermodynamics we define the temperature T operationally, by how we
can measure it. It clearly is an intensive parameter. The corresponding extensive
parameter is called the entropy S and the energy contains a term of the form
TS. The transport of this form of energy is called heat. Entropy cannot be
measured directly like volume or number of particles, and this is often seen
as a major problem in understanding entropy. But there are other extensive
quantities that are often measured indirectly too! For example, the value for
a magnetic moment follows from the response of a magnetic system to a small
change in magnetic field. Measuring a magnetic moment this way is identical to
measuring the entropy by submitting a system to a small change in temperature.
It is true, however, that for all extensive quantities except entropy we are able to
find some simple physical macroscopic picture which enables us to understand
the meaning of that quantity.

What is the real entropy?

Entropy is associated with randomness or chaos, and these concepts are
harder to put into a simple picture. Nevertheless, this is the path followed in
statistical mechanics. Entropy is defined first, and then temperature simply
follows as the intensive state variable conjugate to the entropy. But how to
define entropy is not clear, and there are several approaches. In a technical
sense, the quantities defined in statistical mechanics are only entropy analogues.
For each proposed definition one needs to show that the resulting equations
are equivalent to those derived in thermodynamics, which in the end describes
experimental reality. We will only be able to do so in the thermodynamic limit,
where the system becomes large. Also, we need to keep in mind that we always
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have to be able to define an outside heat reservoir. Therefore, even though in
statistical mechanics we will be able to evaluate the entropy analogue for very
small systems or of the largest possible system, the universe, we cannot equate
this calculated quantity with the entropy used in thermodynamics.

Microscopic origin of model parameters.

In thermodynamics one postulates relations between all the parameters (equa-
tions of state) and formulas for different forms of the energy (state functions).
Typical equations of state are:

pV = NRT (1.1)

for an ideal gas, or the van der Waals form

(p + a
N2

V 2
)(V −Nb) = NkBT (1.2)

Based on macroscopic considerations, the parameters a and b in the second
equation are simply parameters which could be fit to the experimental results.
They can only be given a definite meaning in a discussion of the microscopic
aspects of the models. For example, using experimental data one derives a
value for b of about 1 m3/atom. This is not a problem in thermodynamics,
but it is in statistical mechanics, where the parameter b is equal to the volume
of an atom. Having this statistical mechanics background available, one can
exclude certain ranges of parameter values as unrealistic. Next, the equations
of thermodynamics are used together with these equations of state to describe
the properties of the system. Phase transitions are possible when using the van
der Waals equation, but not with the ideal gas law.

1.2 Program of statistical mechanics.

What do we do?

Statistical mechanics aims to derive all these macroscopic relations from a
microscopic point of view. An atomic model is essential in this case; thermo-
dynamics can be derived without any reference to the atomic nature of matter.
Since the number of particles is very large in many cases (we always have to
take the limit N →∞ ), one can only discuss average quantities. The program
of statistical mechanics can therefore be described by the following four steps:

1. Assume an atomic model.

2. Apply the equations of motion (Newton, Schrödinger, etc).

3. Calculate average quantities.
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4. Take the thermodynamic limit and compare with experiment/thermodynamics.

Collective versus random behavior.

For example, if one could solve all equations of motion, one would find ~ri(t)
and ~pi(t) for all particles i = 1, · · · , N . It is then easy to separate collective
motion and random motion:

~pi(t) = ~pav(t) + δ~pi(t) (1.3)

Energy related to this average motion can easily be retrieved. For example,
the energy stored in moving air can be used to drive a windmill. The energy
stored in the random components δ~pi(t) of the motion is much harder to get out.
Heat engines have a well defined upper limit (Carnot limit) to their efficiency!
Also, the amount of data needed to describe these random components is much
too large. This is where entropy and temperature play a role. In some sense,
entropy measures the amount of randomness in a system.

The energy stored in the random components of the motion, δ~pi(t) is related
to thermal energy. It is hard to recover, it is hard to measure. The only
viable description we have available is a statistical one. we therefore define
entropy as a measure of this randomness. Entropy measures everything we do
not know easily, or therefore everything we do not know. Entropy measures
non-information.

Entropy first!

In statistical mechanics we define entropy first, and then derive tempera-
ture. This is the opposite from the situation in thermodynamics. Randomness
involves the number of states available for a system, and states are much eas-
ier to count using quantum mechanics. This is the basic reason why quantum
statistical mechanics is so much easier than classical statistical mechanics. In a
quantum mechanical description we have to count numbers of states, in classical
mechanics we have to integrate over regions of phase space, which is harder to
describe exactly. Ideas similar to entropy are used in different fields like infor-
mation theory where the amount of information in a message can also be related
to a concept like entropy. In general, any system which contains many degrees
of freedom which we cannot know and are not interested in can be described
using a concept similar to entropy for these degrees of freedom!

1.3 States of a system.

Ising model.
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In order to show how to count states of a system it is very useful to have a
definite example at hand. Although we derive basic results in this model, the
final conclusions will be general. We will consider an Ising system (in one, two,
or three dimensions) with atomic moments ~µi of the form

~µi = si~µ (1.4)

with i = 1, · · · , N . The variables si can only take the values −1 or +1. A state
of the system is given by a specific series of values of the set of numbers {si}, for
example {−,−, +,+, +, · · ·}. Depending on our experimental abilities we can
define a number of quantities of interest for this system. Here we will restrict
ourselves to the total number of particles N and the total magnetic moment
M, with M =

∑
i

si. The real magnetic moment is, of course, ~M = M~µ. One

could also include other quantities, like the number of domain walls (surfaces
separating volumes of spins which are all up from regions where all spins are
down). Or short range correlations could be included. Basically, anything that
can be measured in an experiment could be included.

How many states?

How many states are there for a system with a given value of N? Obviously,
2N . How many states are there for this system with specified values of N and
M? The answer is g(N,M) and this function is called a multiplicity function.
Obviously, the 2N mentioned before is an example of a simpler multiplicity
function g(N). If we define the number of spins up (with value +1) by N↑ and
the number of spins down by N↓ it is easy to show that

g(N,M) =
(

N

N↑

)
(1.5)

with M = N↑ −N↓. One way of deriving this is to choose N↑ elements out of a
total of N possibilities. For the first one we have N choices, for the second one
N − 1, and for the last one N − N↑ + 1. But the order in which we make the
choices is not important, and hence we need to divide by N↑!. We then use the
definition

(
N

N↑

)
=

N(N − 1) · · · (N −N↑ + 1)
N↑!

=
N !

N↑!N↓!
(1.6)

where we have used N = N↑ + N↓. The multiplicity function is properly nor-
malized. Using the binomial expansion

(x + y)N =
N∑

n=0

(
N

n

)
xnyN−n (1.7)

we find with x = y = 1 that
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∑

M

g(N, M) = 2N (1.8)

Note that if we can only measure the values of N and M for our Ising system,
all the states counted in g(N,M) are indistinguishable! Hence this multiplicity
function is also a measure of the degeneracy of the states.

Thermodynamic limit again!

What happens to multiplicity functions when N becomes very large? It
is in general a consequence of the law of large numbers that many multi-
plicity functions can be approximated by Gaussians in the thermodynamic
limit. In our model Ising system this can be shown as follows. Define the
relative magnetization x by x = M

N . The quantity x can take all values between
−1 and +1, and when N is large x is almost a continuous variable. Since g(N,M)
is maximal for M = 0, we want to find an expression for g(N,M) for x ¿ 1. If
N is large, and x is small, both N↑ and N↓ are large too. Stirling’s formula now
comes in handy:

N ! ≈
√

2πNNNe−N+ 1
12N +O( 1

N2 ) (1.9)

Leaving out terms of order 1
N and smaller one finds

log(N !) ≈ N log(N)−N +
1
2

log(2πN) (1.10)

and with

log(g(N, x)) = log(N !)− log(N↑!)− log(N↓!) (1.11)

we find

log(g(N, x) ≈ N log(N)−N↑ log(N↑)−N↓ log(N↓)

+
1
2

(log(2πN)− log(2πN↑)− log(2πN ↓)) (1.12)

log(g(N,x) ≈ (N↑ + N↓) log(N)−N↑ log(N↑)−N↓ log(N↓)

−1
2

log(2πN) +
1
2

(2 log(N)− log(N↑)− log(N↓)) (1.13)

log(g(N,x)) ≈ −1
2

log(2πN)− (N↑ +
1
2
) log(

N↑
N

)− (N↓ +
1
2
) log(

N↓
N

) (1.14)

Next we express N↑ and N↓ as a function of x and N via
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x =
N↑ −N↓

N
=

2N↑ −N

N
(1.15)

which gives

N↑ =
1
2
N(1 + x) (1.16)

N↓ =
1
2
N(1− x) (1.17)

This leads to

log(g(N, x)) ≈ −1
2

log(2πN)

−1
2
(N(1 + x) + 1) log(

1
2
(1 + x))− 1

2
(N(1− x) + 1) log(

1
2
(1− x)) (1.18)

Next we have to remember that this approximation is only valid for values
of x close to zero. Hence we can use log(1 + x) ≈ x− 1

2x2 to get

log(g(N, x)) ≈ −1
2

log(2πN)− 1
2
(N(1 + x) + 1)(log(

1
2
) + x− 1

2
x2)

−1
2
(N(1− x) + 1)(log(

1
2
)− x− 1

2
x2) (1.19)

log(g(N,x)) ≈ −1
2

log(2πN)− (N + 1) log(
1
2
)− 1

2
((N + 1) + Nx)(x− 1

2
x2)

−1
2
((N + 1)−Nx)(−x− 1

2
x2) (1.20)

log(g(N,x)) ≈ −1
2

log(2πN) + (N + 1) log(2)− 1
2
(N − 1)x2 (1.21)

which gives the final result

g(N, x) ≈
√

2
πN

2Ne−
1
2 x2(N−1) (1.22)

Hence we have shown that the multiplicity function becomes Gaussian for
large values of N and small values of x. The Gaussian form is reduced by a
factor e from its maximum at x = 0 at a value x = x0 with

x0 =

√
2

N − 1
(1.23)
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which also is much smaller than one when N is very large. In other words, for
all values where the Gaussian approximation to the multiplicity function has a
large value it is close to the original function! In that sense we can replace the
multiplicity function by a Gaussian form for all values of x. The relative errors
are large when x is not small, but so is the value of g(N,x). In other words,
when the relative difference between the actual multiplicity function and the
Gaussian approximation is large, the values of the multiplicity function are very
small and the absolute value of the error is very small. This result is general for
all multiplicity functions. In the thermodynamic limit the deviations from the
maximum value are always of a Gaussian nature in the area where the values
are large. This is one of the reasons that statistical mechanics works!
It also reinforces the importance of the thermodynamic limit! It is
directly related to the law of large numbers in mathematics.

In order to keep the normalization correct we replace the factor N −1 in the
exponent by N and will use later

g(N, x) ≈
√

2
πN

2Ne−
1
2 x2N (1.24)

Because we know that
∑

x

g(N, x) = 2N (1.25)

and that the stepsize for x is 2
N (which includes a factor of two since M can only

change in units of two!), we can write

2N 2
N

=
∑

x

g(N,x)∆x →
∫ 1

−1

g(N,x)dx (1.26)

For the Gaussian approximation we find

∫ 1

−1

√
2

πN
2Ne−

1
2 x2Ndx =

∫ √
N
2

−
√

N
2

√
2

πN
2Ne−t2dt

√
N

2
≈

∫ ∞

−∞

√
2

πN
2Ne−t2dt

√
2
N

= 2N 2
N

(1.27)

which is the correct normalization indeed.

What is the physical meaning?

At this point we start to wonder what the multiplicity function means. Sup-
pose the parameter x in the previous example is an internal parameter of the
system. This would be the case in a system in zero magnetic field, where there
is no work involved when the magnetic moment changes. In thermodynamics
we have seen that the equilibrium state is the state of maximal entropy. Here
we see that the state with x = 0, which we expect to be the equilibrium state,
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has the maximal multiplicity function. Therefore, the question can be asked if
there is any relation between a multiplicity function and the entropy. We will
return to this question in shortly.

How to use a multiplicity function?

Average values can also be calculated easily in a number of cases. If all
states of the system are equally probable, the expected value for a quantity f is

< f >=
∑

states f(state)∑
states 1

(1.28)

If f only depends on the magnetization x in a given state, this reduces to

< f >=
∫

f(x)g(N,x)dx
N

2
2−N (1.29)

For the Ising model using the Gaussian approximation to the multiplicity
function we find

< x >= 0 (1.30)

< x2 >=
1
N

(1.31)

which means that there is no net magnetization and that the fluctuations are
small. There is no net magnetization since for every state {si} there is a corre-
sponding state {s′i} with s′j = −sj which has the opposite magnetization. One
has to apply a magnetic field in order to produce a magnetic state in our simple
Ising model. In realistic models to be discussed later there are interactions be-
tween neighboring spins that lead to a net magnetic moment. The fluctuations
are small because the multiplicity function is very sharp as we have seen before.

1.4 Averages.

Once we have determined the eigenstates of a system, we have to describe in
which of these states the system actually is. The basic assumption in statistical
mechanics is:

All accessible quantum states are equally probable.

There is no a priori preference for any given state. One keyword in this statement
is accessible. This means that we only have to consider those states which have
properties consistent with the external constraints. For example, in a closed
system we know that the number of particles is fixed. If we start with 27
particles, we only consider quantum states with 27 particles.
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A different way of stating this basic assumption is that if we wait long
enough, a system will go through all accessible quantum states. This seems to
be in contradiction with ordinary quantum mechanics, which specifies that once
a system is prepared in a given quantum state, it will remain in that quantum
state unless there are external perturbations (i.e. a measurement). In statistical
mechanics we therefore assume that our system is always in contact with a large
outside world. This makes sense, since it is hard to shield a sample from all
external influences. For example, try to counteract gravity! The atoms in a gas
do collide with the walls of the container of that gas, and since the atoms in
this wall move in a random way (even at zero temperature due to zero point
motion), the wall adds a small random component to the motion of the atoms
in the gas.

This scenario also requires that the system we are considering is chaotic. In
a chaotic system a small difference in initial conditions growth exponentially
fast, and the random, small perturbations by the walls of the container are very
efficient in causing the system to cycle through all accessible states. An interest-
ing question is if all systems are chaotic when they are very large (remember, we
need to take the thermodynamic limit!). In addition, we do not know for sure
what chaos means in quantum mechanics. In practice, however, all macroscopic
systems seem to obey the laws of thermodynamics.

You run into a number of paradoxes when you want to calculate the entropy
of the universe in the standard thermodynamical way. The discussion above
shows you, however, that the entropy of the universe is not a conceptually
sound quantity. There is no outside reservoir which can cause the universe to
cycle through all possible states, and one can argue that the universe is in a
given quantum state for all eternity.

Take your time!

The argument made in the previous paragraphs allows for a statistical me-
chanical description of the solar system. It is an almost closed system, but
there are weak interactions with the external world. Such a description is, of
course, not very useful. The keywords here are long enough. A system can be
trapped in a metastable state. Glass is a standard example of such a metastable
state and in order to give a meaningful statistical mechanical description of the
behavior of glass we have to exclude all crystalline states. If the duration of
the measurement would be millions of years we have, of course, to include all
those states. A solar system is actually a chaotic system and if we wait long
enough all kinds of weird things can happen. A planet could leave and go off
to infinity and beyond. Fortunately, the time scale of these phenomena is much
larger than the lifetime of a typical star. Therefore, we do not worry about this
happening. Should we?

Truly isolated?
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Finally, we can ask what happens in a truly isolated system. Is the time
evolution of such a system chaotic? This question is not easy to answer, since
we need to make a measurement in order to find out, and this measurement does
change the system! Another interesting theoretical question, but fortunately not
of practical importance. Nevertheless fun to think about.

What can we measure?

The quantities one can measure are always average quantities. It is impos-
sible to determine the positions as a function of time of molecules number two,
three, and seven in a gas of distinguishable molecules. We can measure quan-
tities like volume V and magnetization ~M . These are average quantities, and
they correspond to external handles on the system. The corresponding ther-
modynamic variables are the intensive variables pressure p and magnetic field
~H.

Everything independent.

Hence, we have to know how to calculate averages. There are three ways of
doing this. First, since all states are equally probable, we have that the average
value of a function f is given by

< f >ensemble=
∑

states f(state)∑
states 1

(1.32)

In our simple Ising model this would mean a sum over 2N states, if we assume
that N is specified. If we can only measure N and M, this expression is too
complicated. In this case f has to be a function of N and M only, otherwise it
would imply the ability to measure an additional quantity. Consequently, the
average reduces to

< f >= 2−N
∑

M

g(N, M)f(M) (1.33)

which only has N + 1 terms. We now have a sum over configurations of the
system, where a specific configuration is defined by the values of N and M. The
degeneracy of each configuration, or the number of states in each configuration,
is measured by the multiplicity function.

Averages taken this way are called ensemble averages. The formal justifi-
cation of this procedure in the old formulation of statistical mechanics is as
follows. Consider a set of L identical systems, in our case Ising systems with
N particles. The state of each system is chosen randomly from the accessible
states. If L À 2N , the number of systems with a configuration (N, M) is given
by Lg(N,M)2−N and hence the average of a function f(M) over all systems is
given by
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< f >=
1
L

∑
systems

f(system) =
1
L

∑

M

Lg(N, M)f(M)2−N (1.34)

which reduces to our previous definition.

Reality is not uncorrelated!

In a real experiment we find average quantities in a very different way. If
there are no external probes which vary as a function of time, one measures f
over a certain time and takes the average:

< f >time=
1
T

∫ T

0

f(t)dt (1.35)

The basic assumption is that if we wait long enough a system will sample all
accessible quantum states, in the correct ratio of times! Nobody has yet been
able to prove that this is true, but it is very likely. The alternative formulation
of our basic assumption tells us that all accessible states will be reached in this
way with equal probability. This is also called the ergodic theorem. Hence we
assume that, if we wait long enough,

< f >ensemble=< f >time (1.36)

In a measurement over time we construct a sequence of systems which are cor-
related due to the time evolution. The ergodic theorem therefore assumes that
such correlations are not important if the time is sufficiently long. Again, beware
of metastable states!

Spatial averages.

If the function f is homogeneous, or the same everywhere in the sample,
it is also possible to define a spatial average. Divide the sample into many
subsystems, each of which is still very large. Measure f in each subsystem and
average over all values:

< f >space=
1
V

∫
f(~r)d3r (1.37)

The subsystems will also fluctuate randomly over all accessible states, and this
spatial average reduces to the ensemble average too. In this formulation we use
a sequence of systems which are again correlated. We assume that when the
volume is large enough these correlations are not important.

The difference between the three descriptions is a matter of correlation be-
tween subsystems. In the ensemble average all subsystems are strictly uncorre-
lated. In the time average the system evolves and the subsystem at time t+dt is
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almost identical to the subsystem at time t. In a spatial average, a change in a
given subsystem is directly related to a change in the neighboring systems. The
time average only approaches the ensemble average when we measure very long,
or T →∞. The spatial average only reduces to the ensemble average if we can
divide the system in an infinite number of subsystems, which reduces the rela-
tive effects of the correlation. This requires N → ∞. In the ensemble average
we have to take L →∞, but that is not a problem for a theorist. The limit that
the system becomes infinitely large is called the thermodynamic limit and is
essential in a number of derivations in thermodynamics. Keep in mind, though,
that we still need an even larger outside world to justify the basic assumption!

1.5 Thermal equilibrium.

Isolated systems are not that interesting. It is much more fun to take two
systems and bring them in contact. Suppose we have two systems, A and B,
which are in thermal contact. This means that only energy can flow back and
forth between them. The number of particles in each system is fixed. Also,
each system does not perform work on the other. For example, there are no
changes in volume. Energy can only exchange because of the interactions of
the two systems across their common boundary. Conservation of energy tells us
that the total energy U of the combined system is constant. The big question
is: what determines the energy flow between A and B and what is the
condition for thermal equilibrium, e.g. no net energy flow. We invoke our basic
assumption and note that all accessible states of the total system are equally
probable. A configuration of the total system is specified by the distribution of
energy over A and B, and hence by the value of UA ( since UB = U − UA and
U is constant ). The most probable configuration, or most probable value of
UA , corresponds to the configuration which has the largest number of states
available. The energy UA of this most probably configuration will be well defined
in the thermodynamic limit, since in that case multiplicity functions become
very sharp on a relative scale.

Explanation by example.

As an example, consider the Ising model in the presence of a magnetic induc-
tion ~B. Since the number of particles does not vary, we will drop the reference
to N in the multiplicity functions in this paragraph. It is easy to show that

U = −
∑

i

si~µ · ~B = −M~µ · ~B = −xN~µ · ~B (1.38)

The energy of subsystem A is UA = −xANA~µ · ~B and of subsystem B is UB =
−xBNB~µ · ~B. Because energy is conserved we have xN = xANA + xBNB

and therefore the total relative magnetization x is the average of the values of
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the magnetization of the subsystems. Since the total magnetization does not
change, the only independent variable is xA.

If we assume that the states of the subsystems are not correlated, we have
the following result for the multiplicity functions:

g(N, x) =
∑
xA

g(NA, xA)g(NB , xB) (1.39)

with xA and xB related as described above.
Next, we introduce a short hand notation for the individual terms:

t(xA) = g(NA, xA)g(NB , xB) (1.40)

and notice that this function is also sharply peaked around its maximum value
when both NA and NB are large. For our model the multiplicity function is in
that case

g(U) =

√
2

πN
2Ne−

1
2 x2N (1.41)

Therefore

t(xA) =
2
π

√
1

NANB
2Ne−

1
2 (x2

ANA+x2
BNB) = t0e

− 1
2 (x2

ANA+x2
BNB) (1.42)

If the number of particles is very large, xA is approximately a continuous
variable and the number of states is maximal when the derivative is zero. It is
easier to work with the log of the product in t, which is also maximal when the
term is maximal. We find

log(t(xA)) = log(t0)−1
2
(x2

ANA+x2
BNB) = log(t0)−1

2
x2

ANA− 1
2NB

(xN−xANA)2)

(1.43)
The derivatives are straightforward (thank you, logs)

(
∂ log(t)

∂xA

)
= −xANA − NA

NB
(xANA − xN) (1.44)

(
∂2 log(t)

∂xA
2

)
= −NA − N2

A

NB
= −NNA

NB
(1.45)

The second derivative is negative, and hence we do have a maximum when the
first derivative is zero. This is the case when

0 = −xANB − (xANA − xN) (1.46)

or

xA = x = xB (1.47)
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The last statement is intuitively correct. In equilibrium, any part of a magnet
has the same partial magnetization as the whole magnet.

Next, we approximate the form of the terms t(xA) in the case that both
NA/gg1 and NB/gg1. In that case we can write

t(xA) ≈ t(x)e−
NAN

2NB
(xA−x)2 (1.48)

which has the right value and curvature at the maximum. For large numbers of
particles this form has a small relative error when the value is large, and a large
relative error when the value is very small (and hence does not matter). This is
again one of those cases where we rely on the thermodynamic limit. Statistical
mechanics can be applied to small systems, but in such a case one cannot make
a connection with thermodynamics.

The value of the term is reduced by a factor e for a fluctuation

δxA =
√

2NB

NAN
(1.49)

For a given ratio of NA and NB this becomes very small in the limit N → ∞.
Again, if system A is small, the relative fluctuations in energy are large and one
has to be careful in applying standard results of thermodynamics.

We are now able to do the summation over all terms:

g(N,x) =
∑
xA

t(xA) ≈ t(x)
∑
xA

e
−NAN

2NB
(xA−x)2 (1.50)

or

g(N, x) ≈ t(x)
∫

dxA
NA

2
e
−NAN

2NB
(xA−x)2 = t(x)

1
2

√
πNANB

N
(1.51)

Next, we use are familiar friends the logarithms again to get

log(g(N, x)) ≈ log(t(x)) + log(
1
2

√
πNANB

N
) (1.52)

The first term on the right hand side contains terms proportional to N or NA,
while the second term contains only the logarithm of such numbers. Therefore,
in the thermodynamic limit we can ignore the last terms and we find that the
logarithm of the sum (or of g) is equal to the logarithm of the largest term!
This might seem a surprising result, but it occurs in other places too. In a
mathematical sense, it is again connected with the law of large numbers.

1.6 Entropy and temperature.

The statements in the previous section can be generalized for arbitrary systems.
If two systems A and B, with multiplicity functions gA(N,U) and gB(N,U)
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are in thermal contact, the configuration with the maximum number of states
available follows from finding the maximal value of

t(UA) = gA(NA, UA)gB(NB , U − UA) (1.53)

where U is the total energy of the combined system. We assume that the
systems are very large, and that the energy is a continuous variable. Therefore,
the condition for equilibrium is

0 =
dt

dUA
=

(
∂gA

∂U

)

N

(NA, UA)gB(NB , U−UA)+gA(NA, UA)
(

∂gB

∂U

)

N

(NB , U−UA)(−1)

(1.54)
or

1
gA(NA, UA)

(
∂gA

∂U

)

N

(NA, UA) =
1

gB(NB , U − UA)

(
∂gB

∂U

)

N

(NB , U − UA)

(1.55)
This leads us to define the entropy of a system by

S(U,N, V ) = kBlogg(U,N, V ) (1.56)

where we have added the variable V. Other extensive variables might also be
included. The symbol kB denotes the Boltzmann factor. Note that the entropy
is always positive. The entropy is a measure of the number of states available
for a system with specified extensive parameters. We have to be careful, though.
Strictly speaking, this definition gives us an entropy analogue. We need to show
that we recover all the laws of thermodynamics using this definition. In this
chapter we will consider changes in temperature. In the next chapter we discuss
changes in volume and mechanical work. In the chapter after that changes in
the particle number and the corresponding work term.

The temperature of a system is defined by

1
T

=
(

∂S

∂U

)

N,V

(1.57)

where the partial derivative is taken with respect to U, keeping all other exten-
sive parameters the same. Hence our criterion for thermal equilibrium is

TA = TB (1.58)

which is not unexpected.
The multiplicity function for the total system gtot is found by summing over

all possible configurations of the combination A plus B, but as shown before the
value of the logarithm of this sum is equal to the logarithm of the largest term.
If the energy of system A in equilibrium is ÛA we have

log(gtot)(U) = log(gA(ÛA)) + log(gB(U − ÛA)) (1.59)
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and hence the entropy of the total system is

S = SA + SB (1.60)

which shows that for two systems in thermal equilibrium the entropy of the total
system is equal to the sum of the entropies of subsystems. Hence the entropy
is an extensive quantity. Since U is also extensive, it follows from the definition
of T that T is intensive.

At this point we have two definitions of entropy. In thermodynamics we
defined entropy by making the differential for heat flow exact. In statistical
mechanics we define entropy related to the number of quantum states. In order
for statistical mechanics to be a useful theory, these definitions have to be the
same. This one can show as follows. The flow of energy between the two
systems we considered was not due to work, hence must be the exchange of
heat. Thermodynamics tells us that two systems are in equilibrium if they
have the same temperature, when only heat can flow between them. Therefore,
the quantity T defined in statistical mechanics must be a function of the real
temperature only, since equilibrium is independent of volume and number of
particles. Hence if we define

1
TSM

=
(

∂SSM

∂U

)

N,V

(1.61)

where the superscript SM denotes defined in statistical mechanics, we find

TSM = f(T ) (1.62)

Also, by construction the entropy defined in statistical mechanics is a state
function. For each value of U,V, and N we have a unique prescription to calculate
the entropy. Therefore, the differential of this entropy is exact and we have

d̄Q = TdS = f(T )dSSM (1.63)

As we saw in thermodynamics, the only freedom we have in making an exact
differential out of the heat flow is a constant factor. Hence

TSM = αT (1.64)

SSM =
1
α

S (1.65)

The entropy is therefore essentially the same in both thermodynamics and
statistical mechanics. The factor α is set equal to one, by choosing the correct
value of the prefactor kB in the statistical mechanical definition. A change in
this value would correspond to a change in temperature scale. In order to show
this, we have to consider a simple model system. A gas of independent particles
is a good test case, and the calculations show that the equation of state derived
from a microscopic model is the same as the experimental version, if we take
NAvogadrokB = R.
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1.7 Laws of thermodynamics.

Thermodynamics is based upon four laws or postulates. In statistical mechanics
these laws follow immediately from our previous discussion.

Zeroth Law.

If two systems are in thermal equilibrium with a third system, they are in
thermal equilibrium with each other. Trivial from TA = TB ∪TB = TC ⇒ TA =
TC .

First Law.

Heat is a form of energy. Trivial, since we defined thermal contact by an ex-
change of energy and used this exchange of energy to define entropy.

Second Law.

Entropy always increases. Also trivial, since if the combined system starts with
energies U0

A and U0
B we automatically have gA(U0

A)gB(U0
B) 6 gA(ÛA)gB(ÛB),

or after taking the logarithms Sinit
A + Sinit

B 6 Sfinal
A + Sfinal

B .

Third Law.

The entropy per particle is zero at zero temperature in the thermodynamic limit.
This is more a statement about quantum mechanics. In general, the degeneracy
of the ground state is small. Suppose the degeneracy of the ground state is
Np, which is unusually large. Then the entropy per particle in the ground state
(and hence at T = 0 ) is S(0) = kBp log(N)

N , which is zero when N →∞. Only
when the degeneracy of the ground state is on the order of eN or N ! does one
see deviations from this law. Such systems are possible, however, when we have
very large molecules!

We also see that the local stability requirements derived in thermodynamics
are fulfilled. Since the entropy is related to the maximal term in a product, we
recover expressions like

(
∂2S
∂U2

)
N,V

6 0.

In summary, the first law is an assumption made in both thermodynamics
and statistical mechanics. The only difference is that the introduction of heat as
a form of energy is more acceptable when based on a microscopic picture. The
other three laws all follow from the definition of entropy in statistical mechanics.
Entropy is a more tangible quantity in a microscopic theory. It is still useful,
however, to be able to define entropy from a macroscopic point of view only. This
approach leads to generalizations in systems theory. For any complicated system
for which the state only depends on a small number of macroscopic variables
one can define a quantity like entropy to represent all other variables which are
not of interest. Such a system might not have a clear microscopic foundation
and therefore a generalization of the microscopic definition of entropy in terms
of states might be impossible.
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1.8 Problems for chapter 1

Problem 1.

In an Ising model the magnetic moment of an individual atom is given by
~µi = si~µ with si = ±1. A state of this system is given by a particular set of
values {si}. The total number of spins is N, and the relative magnetization x is
given by 1

N

∑
i

si. The number of states g(N,x) with a given value of N and x is

approximated by

g(N, x) ≈
√

2
πN

2Ne−
1
2 Nx2

A magnetic induction ~B is applied to this system. The energy of the system is
U({si}).

(a) Calculate U(x).

(b) Calculate S(N,U).

(c) Calculate U(T,N).

Problem 2.

Two Ising systems are in thermal contact. The number of atoms in system
j is Nj = 1024. The relative magnetization of system j is xj = 1

Nj

∑
i

sij , where

sij is the sign of the magnetic moment of the i-th site in system j. The average
relative magnetization of the total system is fixed at a value x.

(a) What are the most probable values of x1 and x2?

Denote these most probable values by x̂1 and x̂2. Since only the total magneti-
zation is fixed, it is possible to change these values by amounts δ1 and δ2.

(b) How are δ1 and δ2 related?

Consider the number of states for the total system as a function of δ1: gtot(N, δ1) =
g(N1, x̂1+δ1)g(N2, x̂2+δ2). Use the form given in problem 1 for the multiplicity
functions of the subsystems.

(c) We change the spins of 1012 atoms in system 1 from −1 to +1. Calculate
the factor by which gtot is reduced from its maximal value gtot(N,x).

(d) Calculate the relative change in the entropy for this fluctuation.
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Problem 3.

A system has N sites. The probability that a given site is occupied by an
atom is ξ. Only one atom at a time is able to occupy a site.

(a) Find the probability p(M, N, ξ) that exactly M sites out of N are occupied.

Assume that on the average A sites are occupied, hence ξ = A
N .

(b) Find the probability p(M,A) that M sites are occupied when the average
number of sites occupied is A in the limit N →∞. A and M remain finite!

(c) Show that
∞∑

M=0

p(M, A) = 1, < M >=
∞∑

M=0

Mp(M, A) = A, and that

< M2 >=
∞∑

M=0

M2p(M, A) = A2 + A.

When A is very large, the distribution p(M,A) becomes very sharp around A.

(d) Show that in that case the distribution near A can be approximated by a
Gaussian of width

√
A.

Problem 4.

Use the following approximations derived from Stirling’s formula:

(I) log(N !) ≈ N log(N)

(II) log(N !) ≈ N log(N)−N

(III) log(N !) ≈ N log(N)−N + 1
2 log(N)

(IV) log(N !) ≈ N log(N)−N + 1
2 log(N) + 1

2 log(2π)

For each of these approximations find the smallest value of N for which the
relative error in N ! becomes less than 1%. ( Relative error: |xap−xex|

|xex| .)

Problem 5.

A standard game show problem is the following. You have to choose between
three doors. Behind one of them is a car, behind the others is nothing. You
point at one door, making your choice. Now the game show host opens another
door, behind which there is nothing. He asks you if you want to change your
choice of doors. Question: should you change? Answer: Yes!!!!! Question:
Calculate the ratio of the probabilities of your original door hiding the car and
the other, remaining door hiding the car.
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Problem 6.

The atomic spin on an atom can take 2S+1 different values, si = −S,−S +

1, · · · , +S − 1,+S. The total magnetic moment is given by M =
N∑

i=1

si and

the total number of atoms is N. Calculate the multiplicity function g(N, M),
counting all states of the system for these values N and M. Define x = M

N and
calculate g(N, x) when N becomes very large.

Problem 7.

Twelve physics graduate students go to the bookstore to buy textbooks.
Eight students buy a copy of Jackson, six students buy a copy of Liboff, and
two students buy no books at all. What is the probability that a student who
bought a copy of Jackson also bought a copy of Liboff? What is the probability
that a student who bought a copy of Liboff also bought a copy of Jackson?

Problem 8.

For an ideal gas we have U = 3
2NkBT , where N is the number of particles.

Use the relation between the entropy S(U,N) and the multiplicity function
g(U,N) to determine how g(U,N) depends on U .

Problem 9.

The energy eigenstates of a harmonic oscillator are εn = ~ω(n + 1
2 ) for

n = 0, 1, 2, · · · Consider a system of N such oscillators. The total energy of this
system in the state {n1, n2, · · · , nN} is

U =
N∑

i=1

εni = (M +
1
2
N)~ω

where we have defined

M =
N∑

i=1

ni

Calculate the multiplicity function g(M, N). Hint: relate g(M, N) to g(M, N+
1) and use the identity

m∑

k=0

(
n + k

n

)
=

(
n + 1 + m

n + 1

)

Show that for large integers g(M, N) is a narrow Gaussian distribution in
x = M

N .



Chapter 2

The canonical ensemble:
a practical way for
microscopic calculations.

2.1 Introduction.

Which state variables?

The state of a system depends on a number of parameters. In most measure-
ments it is a good idea to change only one of those parameters and to observe
the response of the system. Hence one needs a way to keep the other parame-
ters at fixed, prescribed values. The same is true in theory. So far we have only
considered the entropy S as a function of the internal energy U, the volume V,
and the number of particles N. If we specify U we can find T. Of course, this
is not what is happening in most measurements. It is easier to specify T and
to measure U (or rather the specific heat in calorimetry). The same is true in
our theoretical formalism. It is often easier to calculate all quantities at a given
temperature.

The formal development in the previous chapter was necessary to establish
that a thermodynamical and a statistical mechanical description of a large sys-
tem are the same. We argued that the entropy as defined in thermodynamics
and in statistical mechanics lead to the same equations describing the physics
of a system, but only if we work in the thermodynamic limit. What the differ-
ences can be for small systems is not clear. The formal definition of entropy is,
however, in many cases not the best way to attempt to obtain a quantitative
description of a system. In this chapter we develop a more practical approach
for statistical mechanical calculations.

23
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Reservoirs are what we need!

The theoretical way to specify temperature is similar to the experimental set-
up. We assume that the system S is in contact with and in thermal equilibrium
with a very large reservoir R with temperature T. Only heat can flow back and
forth between R and S. Volumes do not change, and no work is done between
the system and the reservoir. The number of particles in the reservoir is NR
and is much larger than the number of particles in the system NS . How much
larger?? In thermal equilibrium the fluctuations of the energy per particle in
the reservoir are

∆UR
NR

∝ 1√
NR

(2.1)

or with UR = εRNR we can write this in the form ∆UR = εR
√

NR. Suppose
the maximum energy of the system is US = NSεS . If we demand that

NR À N2
S(εS/εR)2 (2.2)

the system can take all of its energy from the reservoir without noticeably
changing the state of the reservoir! In this case it is really allowed to assume that
the reservoir is at a constant temperature. In practice, this leads to impossibly
large reservoir sizes, but in theory that is, of course, not a problem. For example,
if we assume that a typical reservoir has 1024 particles, we could only consider
systems of about 1012 particles. This is too small. In reality, therefore, reservoirs
do lead to finite size effects. These effects are very hard to calculate, and depend
on the nature of the reservoir. We will therefore ignore them, and assume that
the reservoirs are very large, and that their only effect is to set the temperature.

Probabilities.

We will now address the question: what is the probability of finding
the system S in a unique quantum state s if it is in thermal equi-
librium with a reservoir at temperature T? The energy U0 of the total
combination, system plus reservoir, cannot change. Hence if the system is in
a state s with energy εs, the reservoir has to have energy U0 − εs. The total
number of states available in this configuration for the combination of system
and reservoir is gR(U0 − εs). This does not depend on the multiplicity function
of the system, since we specify the state of the system. The multiplicity function
for the combined reservoir and system is

gS+R(U0) =
∑

s

gR(U0 − εs) (2.3)

All states of the combination of system and reservoir are equally probably,
and hence the probability of finding the combination system plus reservoir in
the configuration with the system in state s is
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PS(s) ∝ gR(U0 − εs) (2.4)

Therefore the ratio of the probabilities of finding the system in state 1 and 2 is

PS(1)
PS(2)

=
gR(U0 − ε1)
gR(U0 − ε2)

= e
1

kB
(SR(U0−ε1)−SR(U0−ε2)) (2.5)

Because the reservoir is very large, the difference between the entropies is

SR(U0 − ε1)− SR(U0 − ε2) ≈ −(ε1 − ε2)
(

∂S

∂U

)

V,N

(U0) = −ε1 − ε2
TR

(2.6)

The reservoir and the system are in thermal equilibrium, and have the same
temperature T. We drop the subscript on the temperature because is is the same
for both system and reservoir. We find

PS(1)
PS(2)

= e
− ε1−ε2

kBT (2.7)

or in general

PS(s) ∝ e
− εs

kBT (2.8)

This is the well-known Boltzmann factor. The only reference to the reser-
voir is via the temperature T, no other details of the reservoir are involved.
Normalization requires

∑
P (s) = 1 and hence we define

Z(T ) =
∑

s

e
− εs

kBT (2.9)

PS(s) =
1
Z e

− εs
kBT (2.10)

The probability PS(s) depends on the temperature T of the system, and
although there is no explicit reference to the reservoir there is still an implicit
reservoir through T. Specifying T requires contact with an outside reservoir.
Also, the probability only depends on the energy εs of the state and not on
any other property of this state. All different states with the same energy have
the same probability. The quantity Z(T ) is called the partition function. We
will see later that for a description of a system at temperature T the partition
function is all we need to know. The probability distribution PS(s) of this form
is called the Boltzmann distribution. The partition function is also a function of
volume and number of particles. The dependence on all extensive state variables,
excluding the entropy, is via the energy of the quantum states. In general, the
energy eigenvalues εs are functions of the volume V and the number of particles
N. Note that the quantum states we consider here are N-particle quantum states.
The energy εs(V, N) is the energy of a collective state and is not equal to the
energy of a given particle!
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At this point we seem to have a contradiction. The basic assumption of sta-
tistical mechanics tells us that all accessible quantum states are equally prob-
ably. The Boltzmann distribution on the other hand gives the states unequal
probabilities! This will always occur when we specify some intensive parameter
like T. In such a case one always needs a reservoir, and the basic assumption
applies to the states of the reservoir plus system. If we specify the state of the
system, this corresponds to a configuration, i.e. a set of states, of the combi-
nation reservoir plus system. The basic assumption only applies to states, not
to configurations. For a configuration one always has to include a multiplicity
function counting the number of states available for that configuration.

The Boltzmann factor is not correct in the limit εs →∞, since that implies
taking a large fraction of the energy of the reservoir and putting it in the system.
The upper limit of εs for which the Boltzmann factor is valid can be derived
from the considerations in the beginning of this section. This is not a practical
problem, though, since we can make the reservoir very large. The probability
of finding states with an energy which is too large for our formalism to be valid
then becomes exponentially close to zero!

2.2 Energy and entropy and temperature.

The expectation value of the energy, or average energy, of the system is given
by

U =
∑

s

εsP (s) (2.11)

where we have dropped the subscript S for system in the probability function.
This can be related to the partition function by

(
∂ log(Z)

∂T

)

V,N

=
1
Z

(
∂Z
∂T

)

V,N

=
1
Z

∑
s

e
− εs

kBT
εs

kBT 2
(2.12)

or

U(T, V, N) = kBT 2

(
∂ logZ)

∂T

)

V,N

(T, V, N) (2.13)

The entropy can be obtained from U(T) through
(

∂S

∂T

)

V,N

=
(

∂S

∂U

)

V,N

(
∂U

∂T

)

V,N

=
1
T

(
∂U

∂T

)

V,N

(2.14)

which leads to

S(T, V, N) = Sref (V, N) +
∫ T

Tref

1
T

(
∂U

∂T

)

V,N

dT (2.15)

since we assume that all other variables remain constant. It is useful to have an
explicit form for the entropy, however. Based on



2.2. ENERGY AND ENTROPY AND TEMPERATURE. 27

− U

kBT
=

∑
s

(
− εs

kBT

)
P (s) (2.16)

and

log(P (s)) = − εs

kBT
− log(Z) (2.17)

we find

− U

kBT
=

∑
s

(log(P (s)) + log(Z))P (s) =
∑

s

P (s) log(P (s)) + log(Z) (2.18)

where we used
∑

P (s) = 1. This leads to

∂

∂T

(
− U

kBT

)
=

(
∂ log(Z)

∂T

)

V,N

+
∂

∂T

∑
s

P (s) log(P (s)) (2.19)

and using the partial derivative relation for the entropy

(
∂S

∂T

)

V,N

=
∂

∂T

(
−kB

∑
s

P (s) log(P (s))

)
(2.20)

The result of the integration is

S(T, V, N) = S0(V, N)− kB

∑
s

P (s) log(P (s)) (2.21)

where we still need to find the constant of integration S0(V, N). This is easiest
if we take the limit that T goes to zero. In that case the system is in the ground
state. Suppose the degeneracy of the ground state is g0. Then P (s) = g−1

0 for
all states s with the ground state energy and P (s) = 0 for other states. The
logarithm of zero is not finite, but the product of the form x log(x) is zero for
x = 0. Hence we have

S(T = 0, V, N) = S0(V, N)− kB

∑

sing

g−1
0 log(g−1

0 ) = S0(V, N) + kB log(g0)

(2.22)
From the formal definition of entropy we see that the second term is equal to
the ground state entropy, and hence we find S0(V, N) ≡ 0. As a result we have
the useful formula

S(T, V,N) = −kB

∑
s

P (s) log(P (s)) (2.23)

Up to now we have considered three variables describing our system: S,
T, and U. These variables are not independent in thermal equilibrium. If we
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specify one of them, the other two are determined. We have found two recipes
for these functions. If the energy U is the independent variable, the entropy
S(U) is constructed by counting states with εs = U . The temperature T(U)
follows from

(
∂S
∂U

)
V,N

= T−1. On the other hand, if the temperature T is
the independent variable, we calculate the Boltzmann factor and the partition
function Z(T ). The energy U(T) then follows from the derivative of log(Z),
while the entropy follows from a calculation of the probabilities P(s). Note that
in calculating the partition function we often use the multiplicity function, since

Z(T ) =
∑

E

g(E)e−
E

kBT (2.24)

which is a simple Laplace transformation. This transformation can be inverted
and used to obtain the multiplicity function g(E) from the partition function,
but that requires an integration in the complex temperature plane. Interesting,
since complex temperature corresponds to time. We obtain factors like eıEt.
Field theory?? But that is for another course.

2.3 Work and pressure.

A system which remains in a given equilibrium state is rather boring. We would
like to change the state of a system. This can be done by varying some of the
external parameters. For example, if a system is in contact with a reservoir,
we can change the temperature of the reservoir. The system will adjust itself
until it is again in thermal equilibrium with the reservoir. This is an example
of a process in which the system is brought from an equilibrium state with
temperature Ti to an equilibrium state with temperature Tf . What is happening
in between, though? If we suddenly switch the temperature of the reservoir, it
will take some time before thermal equilibrium is restored again. The states in
between are non-equilibrium states and the entropy of the system will increase.
We can also change the temperature very slowly, in such a way that at each time
the system is in thermal equilibrium with the reservoir. A process for which a
system is always in thermal equilibrium in all of the intermediate states is called
reversible. If we reverse the change in temperature of the reservoir, the system
will go back to its initial state. If we suddenly switch the temperature back and
forth, the system will end up in a different state with higher entropy. For the
latter to happen we have to allow other variables to change too, if only T,S, and
U can change the states are completely determined by T. Reversible processes
are nice, since they can easily be described in mathematical terms. It is much
harder to deal with irreversible processes.

An important extensive parameter of a system is its volume. We will in this
chapter still assume that the number of particles does not change. A change
in volume will in general affect the energy eigenvalues of the quantum states in
this system and we write εs(V ). If we introduce changes in the volume of the
system, we need a force to produce these changes. We assume that this force is
homogeneous, and hence the only thing we need is an external pressure p. The
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pressure p is the natural intensive parameter which has to be combined with the
extensive volume. The work W performed on the system to reduce the volume
of the system from V to V −∆V (with ∆V small) is p∆V .

An example of a reversible process in which the volume of the system is
reduced is a process where the system starts in a given state ŝ and remains in
that state during the whole process. It is clearly reversible, by definition. If we
reverse the change in volume we will still be in the same quantum state, and
hence return to the same state of the system at the original value of the volume.
The energy of the system is εŝ(V ) and the change in this energy is equal to the
work done on the system

p∆V = ∆εŝ(V ) = −∆V

(
∂εŝ

∂V

)

N

(2.25)

Now consider an ensemble of systems, all with initial volume V and initial
temperature Ti. The number of subsystems in a state s is proportional to the
Boltzmann factor at Ti. We change the volume in a similar reversible process
in which each subsystem remains in the same quantum state. The change in
energy is given by

∆U =
∑

s

∆εsP (s) = p∆V
∑

s

P (s) = p∆V (2.26)

because the probabilities P(s) do not change. Since ∆V is a reduction in
volume we find p = − (

∂U
∂V

)
. We are working with two independent variables,

however, and hence we have to specify which variable is constant. Since P(s)
does not change, the entropy does not change according to the formula we
derived before. The temperature, on the other hand, will have to change! Hence

p = −
(

∂U

∂V

)

S,N

(2.27)

If we take other extensive variables into account we have to keep those the
same too while taking this derivative. The last formula is identical to the formula
for pressure derived in thermodynamics, showing that the thermodynamical and
the statistical mechanical description of volume and pressure are the same. In
thermodynamics we assumed that mechanical work performed on the outside
world was given by d̄W = −pdV . In general we have dU = TdS − pdV , but at
constant entropy this reduces to dU = −pdV and the formula for the pressure
follows immediately. In our present statistical mechanical description we used
the same formula, −pdV , for the work done by a system in a specific quantum
state ŝ. But now we assume that the probabilities for the quantum states do
not change, again leading to dU = −pdV . In thermodynamics the entropy is
always used as a mathematical tool, and in order to arrive at the formula for the
pressure we simply set dS = 0. In statistical mechanics the entropy is a quantity
connected to the quantum states of a system. The fact that the entropy did not
change in derivation for the formula for the pressure is a simple consequence of
the requirement that the quantum states keep their original probabilities.
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Another subtle point is that here we defined pressure via p = − (
∂εs

∂V

)
N

.
This is a definition in a microscopic sense, and is the direct analogue of what
we would expect based on macroscopic considerations. Because we derive the
same work term as in thermodynamics, this microscopic definition is equivalent
to the macroscopic, thermodynamic one.

Very, very simple model.

An example of a process outlined above is the following. This model is much
too simple, though, and should not be taken too serious. Assume that the energy
eigenvalues of our system depend on volume according to εs(V ) = εs(V0) V

V0
.

During the process of changing the volume we also change the temperature
and for each volume set the temperature by T (V ) = T0

V
V0

. In this case the
probabilities are clearly unchanged because the ratio εs

T is constant. Hence in
this very simple model we can describe exactly how the temperature will have
to change with volume when the entropy is constant. The energy is given by
U(V, T (V )) =

∑
εs(V )P (s) = V

V0
U0(T0) and hence the pressure is p = −U0

V0
.

This is negative!

Why this is too simple.

The partition function in the previous example is given by

Z(T, V ) = sumse
−V εs(V0)

V0kBT = F (
V

T
) (2.28)

and hence the internal energy is

U = −kBV
F ′(V

T )
F (V

T )
(2.29)

Also, from the formula for the entropy 2.23 we see that S = G(V
T ) and combining

this with the formula for energy we get

U = V H(S) (2.30)

which gives p = −U
V and hence for the enthalpy H = U+pV = 0. This is exactly

why this model is too simple. There are only two intensive state variables, and
only one (T in this case) can be independent. We will need an extra dependence
of the energy on another extensive state variable to construct a realistic system.
The easiest way is to include N, the number of particles.

In general, beware of simple models! They can be nice, because they allow
for quick calculations, and some conclusions are justified. In general, though,
we need a dependence of the energy on at least two extensive state variables to
obtain interesting results which are of practical importance.

Very simple model, revised.
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Suppose that in the previous model we replace the energy relation by εs(V ) =
εs(V0)

(
V0
V

)α
. Then we would find pV0 = αU0. This is positive when α is

positive. For an ideal gas we have this form of relation between pressure and
energy, with α = 2

3 . This value of α is indeed consistent with the form of the
energy eigenvalues for free particles. The energy relation is of the form ε = ~2k2

2m
and k is proportional to inverse length.

More about pressure.

In summary, in the previous discussion we used the traditional definition of
temperature to evaluate the work done on the system in a volume change. We
linked this work to the change in eigenvalues in a particular process, in which
the entropy remaind the same, by using conservation of energy. In this way
the pressure could be directly related to the thermodynamic functions we have
available.

In order to find the pressure from the energy, we need U(S,V). This form is
usually not available. Counting states we derived S(U,V) and hence we would
like to relate the pressure to this function. A standard trick will do. A change
in the entropy due to changes in the energy and volume is given by

dS =
(

∂S

∂U

)

V

dU +
(

∂S

∂V

)

U

dV (2.31)

It is possible to change both the energy and the volume at the same time in
such a way that the entropy does not change:

0 =
(

∂S

∂U

)

V

(∆U)S +
(

∂S

∂V

)

U

(∆V )S (2.32)

After dividing by ∆V and taking the limit ∆V → 0 we get

0 =
(

∂S

∂U

)

V

(
∂U

∂V

)

S

+
(

∂S

∂V

)

U

(2.33)

or

p = T

(
∂S

∂V

)

U

(2.34)

which is a more useful expression. In the next section we will also give the
expression for the pressure if the temperature and the volume are specified. Of
course, these tricks have been discussed extensively in thermodynamics, where
changes of variables are the bread and butter of the game.

2.4 Helmholtz free energy.

The formula relating the differentials of the entropy, energy, and pressure is
simplified by introducing the pressure and temperature. We find, as expected,
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dU = TdS − pdV (2.35)

If other extensive parameters are allowed to change, we have to add more
terms to the right hand side. The change in energy U, which is also called
the internal energy, is equal to the work done on the system −pdV plus the
flow of heat to the system if the system is in contact with some reservoir, TdS.
When the entropy of the system does not change, the complete change in inter-
nal energy can be used to do work. Therefore, the internal energy is a measure of
the amount of work a system can do on the outside world in processes in which
the entropy of the system does not change. Most processes are of a different
nature, however, and in those cases the internal energy is not useful.

An important group of processes is described by changes in the volume at
constant temperature. In order to describe these processes we introduce the
Helmholtz free energy F:

F = U − TS (2.36)

which has the differential

dF = −SdT − pdV (2.37)

Therefore, in a process at constant temperature the work done on the system
is equal to the change in the Helmholtz free energy. The Helmholtz free energy
measures the amount of work a system can do on the outside world in processes
at constant temperature. Since both the entropy and temperature are positive
quantities, the Helmholtz free energy is always less than the internal energy.
This is true in general. The amount of energy which can be retrieved from a
system is usually smaller than the internal energy. Part of the internal energy
is stored as heat and is hard to recover.

2.5 Changes in variables.

The variables we have introduced so far are S,T,U,V, and p. These variables are
not independent, and if we specify two the other three are determined. We can
choose, however, which two we want to specify. The cases we have considered
either use (U,V) as independent variables and calculate all other quantities from
S(U,V) or use (T,V) as independent variables and calculate all other quantities
through the partition function Z(T, V ) and U(T,V) as a derivative of log(Z).
This implies restrictions on functions like S(U,V). For example, if we know
S(U,V) the temperature follows from the partial derivative

(
∂S
∂U

)
V

. If we specify
the temperature, the energy U is found by solving

1
T

=
(

∂S

∂U

)

V

(U, V ) (2.38)

Since we know that this equation has a unique solution, there are no two
values of U for which S(U,V) has the same slope! Hence T is a monotonous
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function of U and U is an increasing function of T! The ability to switch back
and forth between different sets of independent variables implies constant signs
for certain derivatives, and for response functions. For example, a solid always
expands as a function of temperature. In thermodynamics we related these
properties in a rigorous way to criteria for stability.

2.6 Properties of the Helmholtz free energy.

For a system at constant temperature and volume, the Helmholtz free energy is
the state function determining all physical properties of the system. For exam-
ple, consider a system in thermal contact with a large reservoir at temperature
T. The volume of the system is V. Energy can flow back and forth between
the system and the reservoir; the energy of the system is ε and the energy of
the combination reservoir plus system is U0. In order to find the value of ε
which corresponds to the equilibrium value for the system, i.e. which is equal
to U(T,V), we have to maximize the entropy of the combination system plus
reservoir. Since

Stot(ε) = SR(U0 − ε) + SS(ε) ≈ SR(U0)− 1
T

(ε− TSS(ε)) (2.39)

this means we have to minimize ε − TSS(ε). In other words, if we specify the
temperature and volume of a system, we can give the energy ε an arbitrary
value, but that value will in general not correspond to a system in equilibrium.
The equilibrium value of ε is found by minimizing the Helmholtz free energy
ε − TS(ε). This equilibrium value is called U. Very often, notation is sloppy
and one tells you to minimize U −TS(U). The Helmholtz energies in statistical
mechanics and in thermodynamics therefore have identical properties, and again
the statistical mechanical and thermodynamical descriptions are the same.

The pressure as a function of temperature and volume is related to the
internal energy U and the entropy S by

p(T, V ) = −
(

∂U

∂V

)

T

+ T

(
∂S

∂V

)

T

(2.40)

Both terms can be important, although in general in a solid the first term is
larger and in a gas the second. Beware, however, of the errors introduced by
approximating the pressure by only one of the terms in this expression.

How are they related?

In thermodynamics we have seen that a system as a function of T and V (and
N) is described by the Helmholtz energy F (T, V,N). In statistical mechanics we
needed the partition function Z(T, V, N). These two functions must therefore
be related. It is possible to eliminate S from the definition of the Helmholtz free
energy F, since S = − (

∂F
∂T

)
V,N

. This gives
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F = U + T

(
∂F

∂T

)

V,N

(2.41)

which leads to the following differential equation for F

∂

∂T

(
F

T

)
= − U

T 2
(2.42)

Combined with the relation between U and log(Z) this leads to the simple
equation

(
∂ F

T

∂T

)

V,N

= −kB

(
∂ log(Z)

∂T

)

V,N

(2.43)

or

F = −kBT log(Z) + c(V, N)T (2.44)

The constant of integration c(V,N) is determined by the state of the system
at low temperatures. Suppose the ground state has energy ε0 and degeneracy
g0. The only terms playing a role in the partition function at low temperature
correspond to the ground state and hence we have

lim
T→0

Z = g0e
− ε0

kBT (2.45)

and hence in lowest order in T near T=0:

F (T, V, N) = −kBT log(g0) + ε0 + c(V, N)T (2.46)

which gives for the entropy

S = −
(

∂F

∂T

)

V,N

≈ kB log(g0)− c(V, N) (2.47)

and since we know that at T = 0 the entropy is given by the first term, we
need to have c(V, N) = 0, and

F (T, V, N) = −kBT log(Z(T, V, N)) (2.48)

or

Z(T, V,N) = e
−F (T,V,N)

kBT (2.49)

In other words, we not only know that F can be expressed as a function of
T and V (and N) , we also have an explicit construction of this function. First
we specify the volume V, then calculate all the quantum states εs(V ) of the
system. Next we specify the temperature T and evaluate the partition function
Z(T, V ), the Helmholtz free energy F(T,V) and all other quantities of interest.
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The form of the relation between the partition function and the Helmholtz free
energy is easily memorized by writing the equation in the following form,

e
−F (T,V,N)

kBT =
∑

s

e
− εs

kBT (2.50)

which has Boltzmann like factors on each side.
The entropy follows from

S =
1
T

(U−F ) = kB

(∑
s

εs

kBT
P (s) + log(Z)

)
= kB

∑
s

(
εs

kBT
+ log(Z)

)
P (s)

(2.51)
which gives

S = −kB

∑
s

P (s) log(P (s)) (2.52)

as before.This is just an easier way to derive the entropy as a function of volume
and temperature in terms of the elementary probabilities.

2.7 Energy fluctuations.

A system in thermal contact with a large reservoir will have the temperature of
this reservoir when equilibrium is reached. In thermal contact, energy is allowed
to flow back and forth between the system and the reservoir and the energy of
the system will not be equal to U at all times, only as an average. Thermal
equilibrium implies only that there is no net flow of energy between the system
and the reservoir.

Are the fluctuations real?

So far we have made the connection between thermodynamics and statisti-
cal mechanics in the following sense. Thermodynamics is a macroscopic theory
which is experimentally correct. Statistical mechanics is a microscopic theory,
and the averages calculated in this theory seem to be the same as the corre-
sponding quantities in thermodynamics. We have not addressed the concept
of fluctuations, however. Fluctuations are much more difficult to describe in
thermodynamics, although we have given some prescription how to do this.
Fluctuations are easy to describe in statistical mechanics. But are the fluctua-
tions described in statistical mechanics really what we observe experimentally?
How does the thermodynamic limit play a role here? These are very difficult
questions, but here we simply assume that the answer is that we have the cor-
rect description of fluctuations in thermodynamics, since the theory looks like
the thermodynamic form. The fact that in the thermodynamic limit all distri-
butions are Gaussian will have to play an important role.
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Statistics is easy.

In order to get the root-mean-square fluctuations ∆ε in the energy, we have
to calculate < ε2s >. These fluctuations are related to the heat capacity at
constant volume, CV , as can be shown in the following manner. By definition:

U =< εs >=
1
Z

∑
s

εse
− εs

kBT (2.53)

CV =
(

∂U

∂T

)

V,N

=
1
Z

1
kBT 2

∑
s

ε2se
− εs

kBT − 1
Z2

∑
s

εse
− εs

kBT

(
∂Z
∂T

)

V,N

(2.54)

CV =
1

kBT 2
< ε2s > − 1

Z
∑

s

εse
− εs

kBT

(
∂ log(Z)

∂T

)

V,N

(2.55)

CV =
1

kBT 2
< ε2s > − < εs >

U

kBT 2
(2.56)

which gives with the relation U =< εs > that

kBT 2CV =< ε2s > − < εs >2= (∆ε)2 (2.57)

Two important conclusions are based on this formula. First of all, the right
hand side is positive, and hence the heat capacity is positive. Hence the internal
energy U is an increasing function of the temperature! Second, the heat capacity
is an extensive quantity and hence ∆ε ∝ √

N . This tells us that the fluctuations
in the energy increase with increasing system size. A more important quantity
is the energy per particle, U

N . The fluctuations in the energy per particle are
therefore proportional to 1√

N
. The energy per particle is therefore well defined

in the thermodynamic limit, fluctuations are very small. Also, this formula
for the energy fluctuations is very useful in numerical simulations. In these
calculations one often follows the state of a system as a function of time at
a given temperature, and the fluctuations in the energy are a direct result of
the calculations. By varying the temperature, one also obtains U(T,V). Hence
there are two independent ways of calculating the heat capacity, and this gives
a very good test of the computer programs! Finally, the formula relating the
heat capacity and the fluctuations in energy is an example of a general class of
formulas. Response functions are always related to fluctuations in a system in
equilibrium. In our case, if the fluctuations in energy of a given system at a
given temperature are small, it is apparently difficult to change the energy of
this system. Hence we expect also that we need a large change in temperature
to make a small change in energy, and this implies that the heat capacity is
small.
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2.8 A simple example.

In order to illustrate the ideas developed in this chapter, we consider a simple
example, even though simple examples are dangerous. The energy eigenstates
of a system are given by two quantum numbers, n and l. The possible values
for n are 1, 2, 3, · · · ,∞, but the values for l are limited by l = 1, 2, · · · , n. The
energy eigenvalues depend only on n:

εnl = n~ω (2.58)

where ω is a positive number. This problem is essentially a harmonic oscillator
in two dimensions. The partition function follows from

Z(T ) =
∞∑

n=1

n
(
e
− ~ω

kBT

)n

(2.59)

and since the factor in parenthesis is always between zero and one, this can be
summed to give

Z(T ) =
e
− ~ω

kBT

(1− e
− ~ω

kBT )2
(2.60)

The Helmholtz free energy is

F (T ) = ~ω + 2kBT log(1− e
− ~ω

kBT ) (2.61)

The derivative with respect to temperature yields the entropy

S(T ) = ~ω
2
T

1

e
~ω

kBT − 1
− 2kB log(1− e

− ~ω
kBT ) (2.62)

The internal energy is F + TS and is given by

U(T ) = ~ω coth(
~ω

2kBT
) (2.63)

Note that the term with the logarithm disappeared in the formula for the en-
ergy U. This is characteristic of many problems. The Helmholtz free energy is
F = −kBT log(Z) and hence the entropy is S = kB logZ + kBT 1

Z
(

∂Z
∂T

)
V,N

.
Therefore the terms with the logarithms cancel in F + TS.

At this point it is always useful to consider the entropy and energy in two
limiting cases, small and large temperatures. In our problem the natural energy
scale is ~ω and the temperature is small if the thermal energy kBT is small com-
pared with the spacing between the energy levels, kBT ¿ ~ω. The temperature
is large if the thermal energy kBT covers many energy levels, kBT À ~ω. For
small values of the temperature we find

T → 0 : U ≈ ~ω, S ≈ 0 (2.64)
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as expected. The system is in the ground state, which is non-degenerate. For
large values of the temperature we get

T →∞ : U ≈ 2kBT, S ≈ 2kB − 2kB log(
~ω

kBT
) (2.65)

This makes sense too. When the temperature is large, the details of the quantum
levels are unimportant and the internal energy should be proportional to kBT .
The number of quantum states at energy kBT is kBT

~ω and the entropy should
be proportional to log(kBT

~ω ).
The heat capacity is also easy to get:

C(T ) = ~ω
d

dT
coth(

~ω
2kBT

) =
(~ω)2

2kBT 2

1
sinh2( ~ω

2kBT )
(2.66)

The heat capacity takes the simple limiting forms

T → 0 : C ≈ 0 (2.67)

T →∞ : C ≈ 2kB (2.68)

In a later chapter we will derive the result that a classical harmonic oscillator
in D dimensions has an internal energy of the form DkBT . If the temperature is
large, our quantum system will mainly be in states with large quantum numbers,
and the correspondence principle tells us that such a system behaves like a
classical system. Our calculated value of the internal energy in the limit T →∞
is consistent with this idea.

In order to introduce other extensive variables, we have to make assumptions
for ω. Suppose the frequency ω is a linear function of volume, ω = αV , with
α > 0. In that case we have F(T,V) and the pressure is given by

pV = −~ω coth(
~ω

kBT
) (2.69)

This pressure is negative! This is an immediate consequence of our relation
between frequency and volume, which implies that the energy increases with
increasing volume, opposite to the common situation in a gas of volume V.
The previous formula also shows that the pressure is directly related to the
temperature, as it should be when there are only two sets of conjugate variables.
The limiting values of the pressure are

T → 0 : pV ≈ −~ω (2.70)

T →∞ : pV ≈ −2kBT (2.71)

We can compare these values with the formula for the pressure we derived before

p = −
(

∂U

∂V

)

T

+ T

(
∂S

∂V

)

T

(2.72)



2.9. PROBLEMS FOR CHAPTER 2 39

If the temperature is small, only the first term is important. If the temperature
is large, the second term is dominant. This is true in general. At low tempera-
tures pressure is mainly related to changes in the internal energy, while at high
temperature it is mainly due to changes in the entropy.

Finally, note that in our example U = −pV . The Gibbs-Duhem relation is
U = TS − pV , and these two results are inconsistent. This is not surprising.
The Gibbs-Duhem relation is based on the assumption that the energy is an
extensive quantity. In our example this is not true. Neither the entropy nor
the energy double their value when the volume is increased by a factor of two.
This indicates that one has to be careful in introducing extensive parameters in
a quantum-mechanical formalism. Our example is too simple, again!

2.9 Problems for chapter 2

Problem 1.

The quantum states of a system depend on a single quantum number n, with
n = 0, 1, 2, · · · ,∞. The energy of state n is εn = nε (with ε > 0 ). The system
is at a temperature T.

(1) Calculate the partition function Z(T )

(2) Calculate the energy U(T) and the entropy S(T)

(3) Calculate T(U)

(4) Calculate S(U) and check that 1
T =

(
∂S
∂U

)

Problem 2.

The partition function of a system with quantum states n = 0, 1, 2, · · · ,∞
and energies f(n) is given by Zf (T ) and for a system with energies g(n) by Zg(T ).
The corresponding internal energies are Uf (T ) and Ug(T ); the corresponding
entropies are Sf (T ) and Sg(T ). The quantum states of a composite system
depend on two quantum numbers n and m, with n,m = 0, 1, 2, · · · ,∞. The
energy of a state n,m is εn,m = f(n) + g(m).

(1) Find the partition function Z(T ) for the composite system in terms of
Zf (T ) and Zg(T )

(2) Do the same for the energy and the entropy

Problem 3.
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A system has only two quantum states available. State number one has
energy zero and state number two has energy ε > 0.

(a) Calculate the partition function for this system.

(b) Calculate U(T) and S(T).

(c) Calculate the heat capacity as a function of temperature.

The heat capacity as a function of temperature peaks at a certain value of
the temperature. This peak is called a Schottky anomaly.

(d) Is this peak associated with a phase transition? Give an argument justi-
fying your answer.

Problem 4.

(From Reif) A sample of mineral oil is placed in an external magnetic field
H. Each proton has spin 1

2 and a magnetic moment µ; it can, therefore, have two
possible energies ε = ∓µH, corresponding to the two possible orientations of
its spin. An applied radio frequency field can induce transitions between these
two energy levels if its frequency ν satisfies the Bohr condition hν = 2µH. The
power absorbed from this radiation field is then proportional to the difference
in the number of nuclei in these two energy levels. Assume that the protons in
the mineral oil are in thermal equilibrium at a temperature T which is so high
that µH ¿ kT . How does the absorbed power depend on the temperature T of
the sample?

Problem 5.

(From Reif) A system consists of N weakly interacting particles, each of
which can be in either of two states with respective energies ε1 and ε2, where
ε1 < ε2.

(a) Without explicit calculation, make a qualitative plot of the mean energy
Ē of the system as a function of its temperature T. What is Ē in the limit of
very low and very high temperatures? Roughly near what temperature does Ē
change from its low to its high temperature limiting values?

(b) Using the result of (a), make a qualitative plot of the heat capacity CV

(at constant volume) as a function of the temperature T.
(c) Calculate explicitly the mean energy Ē(T ) and heat capacity CV (T )

of this system. Verify that your expressions exhibit the qualitative features
discussed in (a) and (b).

Problem 6.
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(From Reif) The following describes a simple two-dimensional model of a
situation of actual physical interest. A solid at absolute temperature T contains
N negatively charged impurity atoms per cm3; these ions replacing some of
the ordinary atoms of a solid. The solid as a whole, of course, is electrically
neutral. This is so because each negative ion with charge −e has in its vicinity
one positive ion with charge +e. The positive ion is small and thus free to move
between lattice sites. In the absence of an electrical field it will therefore be
found with equal probability in any one of the four equidistant sites surrounding
the stationary negative ion (see diagram in hand-out).

If a small electrical field E is applied along the x direction, calculate the
electric polarization, i.e., the mean electric dipole moment per unit volume
along the x direction.

Problem 7.

The probability of finding a system in a state s is Ps. In this case the entropy
of the system is S = −kB

∑
s

Ps log(Ps). Assume that the system consists of two

independent subsystems and that the state s is the combination of subsystem 1
being in state s1 and system 2 being in state s2. Use the formula for the entropy
given above to show that S = S1 + S2.

Problem 8.

The energy eigenvalues for a single particle in a given potential are εn. These
energy values are independent of how many other particles are present. Show
that the partition function Z(T, N) obeys the relation Z(T, N) = (Z(T, 1))N .

Problem 9.

The energy eigenvalues of a system are given by 0 and ε + n∆ for n =
0, 1, 2, · · ·. We have both ε > 0 and ∆ > 0. Calculate the partition function for
this system. Calculate the internal energy and the heat capacity. Plot the heat
capacity as a function of temperature for 0 < kBT < ε for (a) ∆ À ε, (b) ∆ = ε
, and (c) ∆ ¿ ε.
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Chapter 3

Systems with a variable
number of particles.

3.1 Chemical potential.

More state variables?

The extensive system parameters we have studied are S,V,N, and U. Until
now we have allowed for variations in S (defining temperature) and V (defining
pressure). In many processes the number of particles is also allowed to change.
The corresponding intensive parameter is the chemical potential, µ. In this
section we will discuss the meaning of the chemical potential. In addition, the
system could have other extensive variables. Changes in these variables lead
to new intensive variables. The recipes in those cases are constructed in a
straightforward manner by copying the steps in the development of T,p, and µ.

Two systems are in diffusive contact if particles can flow back and forth
between them. Consider two systems with temperature T, and fixed volumes.
The number of particles in system 1(2) is N1(N2). The equilibrium configuration
is found by minimizing the Helmholtz free energy of the total system, since the
total system is at constant temperature and volume. If ∆N particles flow from
1 to 2, the change in free energy is

∆F =
(

∂F1

∂N

)

T,V

(−∆N) +
(

∂F2

∂N

)

T,V

(+∆N) (3.1)

We define the chemical potential by

µ(T, V, N) =
(

∂F

∂N

)

T,V

(T, V,N) (3.2)

43



44 CHAPTER 3. VARIABLE NUMBER OF PARTICLES

and the free energy is a minimum if the chemical potentials are equal, µ1 = µ2.
This, of course, is similar to the conditions we found before for temperature and
pressure. Although we could have defined the chemical potential as an arbitrary
function of the partial derivative, the definition above is the only choice which
is consistent with the experimentally derived chemical potential. The definition
in terms of a derivative only holds for large values of N, in general one should
write

µ(T, V, N) = F (T, V, N)− F (T, V, N − 1) (3.3)

which tells us that the chemical potential equals the free energy needed to sub-
tract one particle to the system. This is another reminder that of a difference
between thermodynamics and statistical mechanics. In thermodynamics, the
number of moles N of a material is a continuous variable. In statistical mechan-
ics, the number of particles N is a discrete variable, which can be approximated
as continuous in the thermodynamic limit (showing up again!). Finally, if dif-
ferent types of particles are present, on specifies a chemical potential for each
type according to

µi(T, V,N1, N2, ...) =
(

∂F

∂Ni

)

T,V,Nj 6=i

(3.4)

Chemical potential, what does it mean?

What is this chemical potential? The following example will help you to
understand this important quantity. If the systems 1 and 2 are not in equilib-
rium, the Helmholtz free energy is reduced when particles flow from the system
with a high value of the chemical potential to the system with the lower value,
since ∆F = (µ2 − µ1)∆N . We can also add some other potential energy to
the systems. For example, the systems could be at different heights are have
a different electric potential. This potential energy is Φi. If we bring ∆N
particles from system 1 to system 2, we have to supply an amount of energy
∆E = (Φ2 − Φ1)∆N to make this transfer. Since this is a direct part of the
energy, the total change in the Helmholtz free energy is given by

∆F = (µ̂2 + Φ2 − µ̂1 − Φ1)∆N (3.5)

where µ̂ is the chemical potential evaluated without the additional potential
energy. Therefore, if we choose Φ such that

µ̂2 + Φ2 = µ̂1 + Φ1 (3.6)

the two systems will be in equilibrium. Of course, the presence of an external
potential Φ leads to a term ΦN in the internal energy U and hence in F. As a
result
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µ(T, V, N) =
(

∂F

∂N

)

T,V

= µ̂ + Φ (3.7)

This is called the totalchemical potential. Two systems are in equilibrium
when the total chemical potential is the same. Ordinary, standard po-
tentials therefore give a direct contribution to the chemical potential. But even
without the presence of external potentials, the Helmholtz free energy will still
depend on the number of particles N and we will find a value for the chemical
potential. The value of the chemical potential without any external forces is
called the internal chemical potential. Hence the total chemical potential is the
sum of the internal chemical potential and the external potentials! Confusion
arises when one uses the term chemical potential without specifying total or
internal. Some textbooks assume that chemical potential means internal chem-
ical potential, others imply total chemical potential. Keep this in mind when
reading articles, books, and exam problems!! There is even more confusion,
since we often call the quantity U the internal energy. If that would mean the
energy without the effect of external potentials, the total energy would be the
sum of these two quantities. We could define

Utotal = Uinternal + NΦ (3.8)

Finternal = Uinternal − TS (3.9)

Ftotal = Finternal + NΦ (3.10)

µ = µ̂ + Φ (3.11)

in order to be consistent. But I prefer to call Utotal the internal energy and only
use µ and not µ̂.

Origin of internal chemical potential.

The chemical potential is related to the partial derivative of the Helmholtz
free energy F = U − TS. Hence we have

µ =
(

∂U

∂N

)

T,V

− T

(
∂S

∂N

)

T,V

(3.12)

If the particles are independent, the internal energy is linear in N and the first
contribution to the chemical potential is independent of N (but does depend
on T and V). In real life, however, adding particles to a system changes the
interactions between the particles that are already present. The energy depends
on N in a non-linear manner. This is called correlation. But even if the particles
are independent, the entropy will be non-linear in N, since adding particles will
change the number of ways the particles already present can be distributed over



46 CHAPTER 3. VARIABLE NUMBER OF PARTICLES

available states. Hence even for independent particles the chemical potential
will depend on N.

Simple models of chemical potential effects often ignore any volume depen-
dence. We already know from thermodynamics that this cannot be sufficient,
because in that case the chemical potential and the temperature are not inde-
pendent variables. This can be easily demonstrated, since in this case we need
to have:

S = Nf(
U

N
) (3.13)

for some function f(x). This gives

1
T

= f ′(
U

N
) (3.14)

or U = Ng(T ) and hence S = Nf(g(T )). In this case F = Nh(T ) is linear in N
and µ = h(T ). Even though such simple models are suspect, they can still be
useful in some discussions.

Basic formulation.

In summary we have:

The internal chemical potential is a thermodynamic variable which
is equivalent to a standard potential energy: the value of the differ-
ence in internal chemical potential between two systems is equal to
the magnitude of the potential barrier needed to bring these two
systems into diffusive equilibrium.

In other words, two systems are in diffusive contact are in equilibrium when the
total chemical potentials are the same.

3.2 Examples of the use of the chemical poten-
tial.

Electricity is always useful.

As an example we consider a standard, old-fashioned battery. This simple
example is very useful to help us gain further understanding of what a chemical
potential is. The negative electrode is made of Pb, the positive electrode of
PbO2 with a Pb core. The electrolyte is diluted H2SO4, in other words mixed
with water . The chemical reaction at the negative electrode is

Pb + SO2−
4 → PbSO4 + 2e− + 0.8eV (3.15)
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and at the positive electrode

PbO2 + 2H+ + H2SO4 + 2e− → PbSO4 + 2H2O + 3.2eV (3.16)

We ignore free electrons in the electrolyte, and hence the only place where we
can take electrons or dump electrons is in the Pb of the electrodes. Therefore,
if the terminals of the battery are not connected by an external wire, these
reactions have as a net result a transport of electrons from the positive electrode
to the negative electrode. The amount of energy gained by transferring one
electron from the positive electrode to the negative electrode through these
reactions is 2 eV. Therefore, the internal chemical potential is higher at the
positive electrode, and µ̂+ − µ̂− = 2eV . Of course, after a number of electrons
are transported from the positive electrode to the negative electrode there will
be a difference in electrical potential energy between the electrodes. Suppose
the potentials at these electrodes are V+ and V−. The flow of electrons in
this unconnected battery will have to stop when the total chemical potential is
constant, or

µ̂+ + (−e)V+ = µ̂− + (−e)V− ⇒ V+ − V− = 2V (3.17)

Do we know how much charge has been transferred? No, unless we know the
capacitance of the battery, which depends on the shape and geometry of the
plates and the space between them.

If we connect the terminals of the battery through an outside resistor, elec-
trons will flow in the outside circuit. This will reduce the number of electrons
in the negative electrode, and as a result the chemical reactions will continue to
make up for the electrons leaving through the outside circuit. The actual dif-
ference in potential between the electrodes will be less than 2V and will depend
on the current through the outside circuit. Of course, in real life the poten-
tial difference is always less than 2V because of internal currents through the
electrolyte.

Gravity and atmospheric pressure.

A second example is a very simplified study of the pressure in the at-
mosphere. Consider a column of gas in a gravitational field. There is only
one type of molecule in this gas. The gravitational potential at a height h in
the column is mgh, where m is the mass of a molecule. We assume that the
temperature T is the same everywhere, in other words this is a model of a
isothermal atmosphere. Probably not very realistic, but not a bad start. The
density n = N

V of the molecules is a function of h. Next, we focus on a slice
of gas at a height h with a thickness dh. The value of dh is small enough that
the density n(h) does not vary appreciably within this slice. But it is also large
enough that the slice of the gas contains many molecules. This is possible only
because the gravitational potential doe not very much on the scale of the inter-
atomic distance! We assume that the gas inside this slice through the column
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is an ideal gas. This is again an idealization. The internal chemical potential
for an ideal gas with density n and temperature T is

µ̂(n, T ) = kBT log(n) + µ0(T ) (3.18)

which only depends on n via the logarithm. The gas in this column in the
atmosphere is in diffusive contact, and equilibrium requires that the chemical
potential is the same everywhere. Therefore we find:

kBT log(n(h)) + mgh = kBT log(n(0)) (3.19)

which leads to

n(h) = n(0)e−
mgh
kBT (3.20)

Because the gas inside a small slice is ideal, we can use the ideal gas equation
of state, pV = NkT , to obtain the isothermal atmospheric pressure relation

p(h) = p(0)e−
mgh
kBT (3.21)

3.3 Differential relations and grand potential.

The six most common basic variables describing a system are the extensive para-
meters entropy S, volume V, number of particles N, and the intensive parameters
temperature T, pressure p, and chemical potential µ. Every new measurable
quantity adds one extensive parameter and one intensive parameter to this list.
The free energy is measures by the internal energy U or of a quantity derived
from the internal energy by a Legendre transformation. Of the six basic vari-
ables only three are independent, the other three can be derived. As we have
seen before we need at least one extensive parameter in the set of independent
variables, otherwise the size of the system would be unknown.

If our choice of basic variables is T,V, and N, the way to construct the other
functions is via the partition function and the Helmholtz free energy, using
partial derivatives to get S,P, and µ and using U = F + TS to get U. If our
choice of basic variables is U,V, and N, we calculate the entropy first. Remember
that

1
T

=
(

∂S

∂U

)

V,N

(3.22)

and

p

T
=

(
∂S

∂V

)

U,N

(3.23)

The third partial derivative can be obtained in the following way. A general
change in the entropy as a result of changes in the basic variables is
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dS =
(

∂S

∂U

)

V,N

dU +
(

∂S

∂V

)

U,N

dV +
(

∂S

∂N

)

U,V

dN (3.24)

Consider a reversible change in the state of the system in which we keep T
and V constant but change S,U, and N:

(∆S)T,V =
(

∂S

∂U

)

V,N

(∆U)T,V +
(

∂S

∂N

)

U,V

(∆N)T,V (3.25)

After dividing by (∆N)T,V and taking the limit of the variations to zero we find
(

∂S

∂N

)

T,V

=
(

∂S

∂U

)

V,N

(
∂U

∂N

)

T,V

+
(

∂S

∂N

)

U,V

(3.26)

(
∂S

∂N

)

T,V

− 1
T

(
∂U

∂N

)

T,V

=
(

∂S

∂N

)

U,V

(3.27)

1
T

(
∂F

∂N

)

T,V

=
(

∂S

∂N

)

U,V

(3.28)

from which we get, using the definition of the chemical potential,
(

∂S

∂N

)

U,V

= −µ

T
(3.29)

The relation between the differential changes in dS and dU ,dV , and dN is
now very simple and is usually written in the form

dU = TdS − pdV + µdN (3.30)

This is the standard formulation of the first law, as expected. It confirms the
point we learned in thermodynamics, that with S,V,N as independent variables
the partial derivatives of U give the remaining dependent variables. The set
S,V,N is therefore a natural set for U. Of course, if we for example use T,V,
and N as independent variables we can also calculate U(T,V,N) and the relation
between the differentials. In this case, however, the coefficients are not simple
functions of the dependent variables, but more complicated response functions:

dU = CV dT +

(
−p + T

(
∂S

∂V

)

T,N

)
dV +

(
∂U

∂N

)

T,V

dN (3.31)

The Helmholtz free energy F was introduced exactly for that reason, because it
has T,V,N as natural independent variables:

dF = −SdT − pdV + µdN (3.32)

One important class of processes are those which occur at constant T,V, and
N. A second group keeps T,V, and µ constant. This is certainly true in many
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chemical reactions! How do we describe the equilibrium state of a system where
the values of µ, T, and V are specified. A simple observation is based on the
relations between the differentials. If we define Ω = F − µN we find

dΩ = −SdT − pdV −Ndµ (3.33)

Hence Ω has as natural variables T,V, and µ. This is exactly what we need.
Also, for a process at constant µ and T the change in Ω is equal to the work
performed by the system. In other words, Ω measures the amount of energy
available in a system to do work at constant chemical potential and temperature.
The free energy Ω is called the grand potential.

3.4 Grand partition function.

One way of calculating Ω is via the Helmholtz free energy F(T,V,N), obtained
from the partition function. If we solve µ =

(
∂F
∂N

)
T,V

for N(µ, T, V ) we can
construct Ω(µ, T, V ) = F (T, V,N(µ, T, V )) − µN(µ, T, V ). This assumes that
we are able to invert the formula for µ(T, V,N) and solve for N uniquely. That
this is possible is by no means obvious from a mathematical point of view only.
Of course, in thermodynamics we know that the relation between µ and N
is never decreasing, and hence if we did thermodynamics there would be no
problem. Here we are doing statistical mechanics, though, and we have to show
that the statistical mechanical description is equivalent to the thermodynamical
one.

We will now describe a procedure to calculate the grand potential directly,
and hence in this procedure we find the inverse relation for N. The procedure
is the analogue of what we did to construct the partition function. It is a very
general construction, which works for all types of free energies! Consider a
system S in thermal and diffusive equilibrium with a very large reservoir R.
Both energy and particles can be exchange. The total energy U0 of R + S
and the total number of particles N0 in R + S are constant. Therefore, the
probability of finding the system S in a particular quantum state s with energy
εs and number of particles ns is again proportional to the number of quantum
states gR(U0 − εs, N0 − ns) the reservoir has available with energy U0 − εs and
number of particles N0 − ns. Or

Prob(1)
Prob(2)

=
gR(U0 − ε1, N0 − n1)
gR(U0 − ε2, N0 − n2)

(3.34)

The multiplicity function is the exponent of the entropy. If we assume the the
reservoir is very large, the presence of the system causes only small perturba-
tions, and in first order we find

Prob(1)
Prob(2)

= exp(
1

kB
(n2 − n1)

(
∂SR
∂N

)

U,V

+
1

kB
(ε2 − ε1)

(
∂SR
∂U

)

V,N

) (3.35)
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The partial derivatives are −µR
TR

and 1
TR

for the reservoir. Since we assume
thermal and diffusive equilibrium, both µ and T are the same for system and
reservoir, TR = TS = T and µR = µS = µ, and hence we the probability of
finding the system with temperature T and chemical potential µ in a quantum
state s is equal to

Prob(s) =
1
Z

e
1

kBT (µns−εs) (3.36)

The exponential factor is called the Gibbs factor in this case and is an obvious
generalization of the Boltzmann factor. The normalization factor Z is called the
grand partition function or grand sum and is defined by

Z(T, V, µ) =
∑

states

e
1

kBT (µns−εs) (3.37)

The probabilities are again a ratio of an exponential factor and a normalization
sum. We saw before that the partition function contains all information needed
to describe a system. The grand partition function also contains all information
needed. Sometimes it is easier to work with the partition function, sometimes
with the grand partition function.

Since both partition functions contain all information, it must be possible
to construct one from the other. The grand partition function is related to the
partition function by a sum over particle numbers:

Z(T, V, µ) =
∑

N̂

e
µN̂

kBT Z(T, V, N̂) (3.38)

This follows when we split the summation over all states in the grand sum into
two parts, a summation over all possible number of particles and for each term in
that summation a sum over all states with the corresponding number of particles.
The latter gives the partition function. In a later chapter we will give a more
formal justification why this is allowed even in systems where the number of
particles is not conserved. It is related to the invariance of the trace operator in
quantum mechanics. The transformation above is a standard Laplace transform,
and can be inverted. This requires, however, a analytic continuation of the
grand partition function in the complex µ plane. Mathematically, that is not a
problem, but what does that mean in terms of physics?

How do we extract information from the grand partition function? One case
is easy. The average number of particles in the system, < ns >=

∑
nsProb(s):

(
∂Z

∂µ

)

T,V

=
1

kBT

∑
s

nse
1

kBT (µns−εs) =
1

kBT
Z < ns > (3.39)

Therefore, the average number of particles ( now described by the function
N(T, V, µ) ), is directly related to the grand partition function by

N(T, V, µ) = kBT

(
∂ log(Z)

∂µ

)

T,V

(3.40)
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Since the temperature in many formulas appears as 1
kBT , this combination

is often abbreviated by defining β = 1
kBT . Using β simplifies many superscripts

to simple products in stead of ratios. Of course, this β should not be confused
with the critical exponent describing the disappearance of the order parameter
near the critical temperature! Also, the chemical potential often occurs in the
combination e

µ
kBT . This exponential is called the absolute activity (often de-

noted by λ = e
µ

kBT ) or the fugacity (often denoted by z = e
µ

kBT ). The notation
in the latter case is not the same in all books, unlike the conventional abbrevi-
ation β, which is used almost uniformly. In terms of β, one finds immediately
that

(
∂Z

∂β

)

µ,V

=
∑

s

(µns − εs)eβ(µns−εs) = Z(µN − U) (3.41)

since U =< εs >. This gives

U = µN −
(

∂ log(Z)
∂β

)

µ,V

=
(

µ

β

∂

∂µ
− ∂

∂β

)
log(Z) (3.42)

The recipe for calculations at specified values of µ, T, and V is now clear. Cal-
culate the grand partition function Z(µ, T, V ) and then the number of particles,
internal energy, etc. The construct the grand potential. There is a better and
direct way, however, as one might expect.

Since the grand potential is the correct measure of energy available to do
work at constant V, µ and T, it should be related to the grand partition function.
The correct formula can be guessed directly when we remember that:

(
∂Ω
∂µ

)

T,V

= −N (3.43)

After comparing this partial derivative with the expression for N in 3.40 we
conclude that:

Ω = −kBT log(Z) + f(T, V ) (3.44)

where the function f(T,V) is still unknown. We will show that it is zero. This
last formula can be inverted to give an expression for log(Z). Inserting this
expression in the formula for U leads to

U =
(

µ

β

∂

∂µ
− ∂

∂β

)
log(Z) =

(
µ

β

∂

∂µ
− ∂

∂β

)
(β(f − Ω)) (3.45)

U = Ω− f +
(

µ
∂

∂µ
− β

∂

∂β

)
(f − Ω) (3.46)

U = Ω− f − µ

(
∂Ω
∂µ

)

β,V

− β

(
∂f

∂β

)

µ,V

+ β

(
∂Ω
∂β

)

µ,V

(3.47)
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Next we use the following thermodynamical relations,
(

∂Ω
∂µ

)
V,T

= −N and
(

∂Ω
∂β

)
V,µ

= −Tβ−1
(

∂Ω
∂T

)
V,µ

= TSβ−1 to get

U = Ω− f + µN − β

(
∂f

∂β

)

µ,V

+ TS (3.48)

and with U = Ω + TS + µN this gives

0 = f + β

(
∂f

∂β

)

µ,V

=
(

∂βf

∂β

)

µ,V

(3.49)

or

f(T, V ) = kBTg(V ) (3.50)

The partial derivative of the grand potential with respect to T yields the entropy:

S = −
(

∂Ω
∂T

)

µ,V

=
(

∂kBT log(Z)
∂T

)

V,µ

+ kBg(V ) (3.51)

In the limit T → 0 the grand partition function approaches log(g0) where g0 is
the degeneracy of the ground state. Therefore, the first term on the right hand
side approaches kB log(g0), which is the entropy at zero temperature. Therefore,

lim
T→0

g(V ) = 0 (3.52)

but, since g(V ) does not depend on T, this shows that g(V ) = 0 and hence

Ω = −kBT log(Z) (3.53)

or

Z = e−βΩ (3.54)

This form is very similar to the one we found for the relation between the
canonical sum and the Helmholtz free energy.

Working with the grand canonical ensemble is necessary in every situation
where the number of particles is allowed to vary. Besides for systems in diffusive
contact, it is also the ensemble of choice in quantum field theory, where particles
are destroyed and created via operators a and a† and the quantum states are
elements of a Fock space with variable numbers of particles.

Once we have found the grand potential, we are also able to evaluate the
entropy. A simple formula for the entropy is again obtained in terms of the
probabilities of the quantum states. We have

S =
U − Ω− µN

T
=

1
T

∑
s

εsProb(s) + kB log(Z)− µ

T

∑
s

nsProb(s) (3.55)
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S = kB

∑
s

εs − µns

kBT
Prob(s) + kB log(Z)

∑
s

Prob(s) (3.56)

where we used the fact that the sum of all probabilities is one. This then leads
to:

S = −kB

∑
s

(
µns − εs

kBT
− kB log(Z)

)
Prob(s) (3.57)

or

S = −kB

∑
s

Prob(s) log(Prob(s)) (3.58)

just as we had in the canonical ensemble. Note, however, that the similarity is
deceptive. The summation is now over a much larger set of states, including
all possible values of N. So how can the result be the same? The answer is
found easily when we introduce the independent variables. The result of 3.58
is S(T, V, µ), while for the canonical case we get S(T, V, N). Like in thermo-
dynamics, we are doing calculus of many variables, and keeping track of the
independent variables is again important!

The fluctuations in the number of particles follow from a calculation of the
average square of the number of particles, just as in the case of the energy in
the canonical ensemble. We start with

< N2 >=
∑

s

n2
sProb(s) (3.59)

which is equal to β−2 1
Z

(
∂2Z
∂µ2

)
. Using with < N >=

∑
s

nsProb(s) = β−1 1
Z

(
∂Z
∂µ

)

we find

(
∂N

∂µ

)

T,V

= β−1 1
Z

(
∂2Z

∂µ2

)
− β−1 1

Z2

((
∂Z

∂µ

))2

(3.60)

or

kBT

(
∂N

∂µ

)

T,V

=< n2
s > − < ns >2= (∆N)2 (3.61)

All the partial derivatives are at constant T and V. This formula shows that N is
a monotonically increasing function of µ, and hence µ a monotonically increasing
function of N, at constant T and V. This also followed from the stability criteria
in thermodynamics. The quantity

(
∂N
∂µ

)
T,V

is a response function, just like

CV . The formula above again shows that this type of response function is
proportional to the square root of the fluctuations in the related state variable.
If the fluctuations in the number of particles in a given system are large, we
need only a small change in chemical potential to modify the average number
of particles. In other words, if intrinsic variations in N at a given value of µ
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occur easily, it is also easy to induce a change in the average by external means,
e.g. changing µ. Finally, the fluctuations ∆N are proportional to

√
N . In the

thermodynamic limit the fluctuations in the number of particles are infinitely
large, but the fluctuations per particle become infinitesimally small.

3.5 Overview of calculation methods.

The development of the ideas used in statistical mechanics starts with the dis-
cussion of a closed system, with extensive parameters V, U, and N (and possibly
more), which can be set at specified values. These extensive parameters are the
independent parameters describing the system. The link between the micro-
scopic world and thermodynamics is obtained by calculating the entropy. There
are several ways of doing so (more about that in a later chapter), but here we
start with the multiplicity function, g(U, V,N). This function gives the number
of microscopic states available to the system at given U, V, and N. Next, we
define the entropy analogue by S(U, V,N) = kB log(g(U, V, N)). We then take
the thermodynamic limit, making the system infinite, and all variables become
continuous. The thermodynamic limit is always needed, no matter which formu-
lation of statistical mechanics one is using. Sometimes people try to hide it, and
calculate statistical mechanical functions for small systems. But those results
are suspect, because only in the thermodynamic limit can we prove that the
entropy analogue defined above is equivalent to the entropy defined in thermo-
dynamics. Once we have shown that the entropy analogue is indeed equivalent
to the thermodynamical entropy, we can use all results from thermodynamics,
and we are in business.

The path followed above is a good path for theoretical development, but
often not a good way for practical calculations. Using the temperature T as an
independent variable makes life much easier (most of the time). In our model
system we can now choose the following combinations of independent variables:
(T, V, N), (T, V, µ) , and (T, p,N). Note that we need at least one extensive
variable. Other combinations are possible to, but do not lead to useful free
energies (see thermodynamics). Next, we construct the Hilbert space of all
possible quantum states which are consistent with the values of the extensive
parameters in the combination. This space is, for the three cases above, S(V, N)
, S(V ) , and S(N), respectively. Next, we calculate the partition sum for these
situations:

Z(T, V, N) =
∑

s∈S(V,N)

e−βεs (3.62)

Z(T, V, µ) =
∑

s∈S(V )

e−β(εs−µns) (3.63)

ζ(T, p,N) =
∑

s∈S(N)

e−β(εs+pvs) (3.64)
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where in the last case (which we did not discuss here) the volume of the state
is vs. This last formulation is only included for completeness, and to show how
other transformations are made. The argument of the exponent in the sum is
easy to find if we think about the free energies that are used in the situations
above. In the first case it is F, in the second case Ω = F − µN , and in the last
case G = F + pV . The relations with the free energy follow from:

F (T, V, N) = −kBT log(Z(T, V, N)) (3.65)

Ω(T, V, µ) = −kBT log(Z(T, V, µ)) (3.66)

G(T, p,N) = −kBT log(ζ(T, p, N)) (3.67)

or in exponential form, which resembles the sum in the partition functions,

Z(T, V, N) = e−βF (T,V,N) (3.68)

Z(T, V, µ) = e−βΩ(T,V,µ) (3.69)

ζ(T, p, N) = e−βF (T,p,N) (3.70)

Once we have the free energies, we can revert to thermodynamics. We
can also do more calculations in statistical mechanics, using the fact that the
probability of finding a state is always the exponential factor in the sum divided
by the sum. This is a generalization of the Boltzmann factor. We can then
calculate fluctuations, and show that certain response functions are related to
fluctuations. For example, we would find:

(∆V )2 = kBT

(
∂V

∂p

)

T,N

(3.71)

The example with changing V to p is a bit contrived, but shows the general
principle. A practical example involves magnetic systems, where we can either
use the total magnetization M of the applied field H as an independent variable.
There we would have:

Z(T, V,N,M) =
∑

s∈S(V,N,M)

e−βεs = e−βF (T,V,N,M) (3.72)

or

Z(T, V, N, H) =
∑

s∈S(V,N)

e−β(εs−Hms) = e−βG(T,V,N,H) (3.73)

where G is a generalized form of a Gibbs energy. We have used the same symbol
for the partition function (sorry, I could not find a new and better one). This
is also very commonly done in the literature. Fluctuations follow from
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(∆M)2 = kBT

(
∂M

∂H

)

T,V,N

(3.74)

Finally, the different partition sums are related by Laplace transformations.
For example, we have

Z(T, V, µ) =
∑

N

eβµNZ(T, V,N) (3.75)

We can also do the back transformation, but that involves an integration in the
complex µ plane. Although we can relate complex temperature T to time, I
have no idea what the physical meaning of complex µ would be.

3.6 A simple example.

A very simple example of the use of the grand canonical ensemble is a study of a
one-dimensional photon gas where all the photons have frequency ω. The energy
εn of the quantum state n is n~ω, while the number of particles in that state is
Nn = n. The values for n are 0,1,2,.... This example is oversimplified, since one
quantum number controls two quantum states. Also, there are only two sets of
thermodynamic variables. We should therefore only use it as an illustration of
how we sometimes can do calculations, and not draw strong conclusions from
the final results. The grand partition function follows from

Z(T, µ) =
∞∑

n=0

eβ(µ−~ω)n (3.76)

This series can only be summed for µ < ~ω, leading to

Z(T, µ) =
1

1− eβ(µ−~ω)
(3.77)

All thermodynamic quantities can now be evaluated from the grand potential
and we find

Ω(T, µ) = kBT log(1− eβ(µ−~ω)) (3.78)

S(T, µ) = −kB log(1− eβ(µ−~ω)) +
1
T

~ω − µ

1− eβ(µ−~ω)
(3.79)

N(T, µ) = frac1eβ(~ω−µ) − 1 (3.80)

U(T, µ) = Ω + TS + µN = N~ω (3.81)

We have followed all steps in the statistical mechanical prescription for the
grand canonical ensemble, and we obtained reasonable answers. Nevertheless,
thermodynamics tells us that for a system with only T, S, µ, and N as state
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variables U = TS + µN (Gibbs-Duhem), and hence Ω = 0. Also, T =
(

∂U
∂S

)
N

which is zero according to the formula U = N~ω. What went wrong?
There are two problems. First of all, in a T,S,µ ,N system we cannot choose

T and µ as independent variables in thermodynamics. We have to introduce an
extensive parameter. Second, we have to take the thermodynamic limit. The
formula for N can be inverted to yield a formula for µ:

µ = ~ω − kBT log(1 +
1
N

) (3.82)

which tells us that for a given value of N the chemical potential and the tem-
perature are related. In the thermodynamic limit N →∞ we find µ = ~ω. For
this value of the chemical potential the series for the grand partition function
does not converge anymore, hence we have to perform all calculations for finite
values of N and take the limit only in the end. The grand potential per particle
is

Ω(T,N)
N

= −kBT
log(N + 1)

N
(3.83)

and this quantity is zero in the thermodynamic limit. Hence we retrieved the
result anticipated from thermodynamics. We also find

S(T,N) = kB log(N + 1) + NkB log(1 +
1
N

) (3.84)

which shows that in the thermodynamic limit S
N = 0. In other words, temper-

ature is not well-defined for this system. This problem is independent of the
thermodynamic limit, but is inherent to our simple model where we use only
one quantum number for both energy and number of particles. For a given
number of particles the energy is fixed! Hence we really only have two indepen-
dent variables in our system and thermodynamically our system is completely
characterized once we know the value of N. In realistic physical models the pa-
rameters N and U have to be independent. An example is found in the next
section.

3.7 Ideal gas in first approximation.

The ideal gas is the first realistic and complete model we encounter. There are
three sets of thermodynamic variables. We have volume and pressure, entropy
and temperature, and chemical potential and number of particles. Therefore,
we can choose T and µ independently, after which the value of p is fixed.

In the original experiments with a gas as a function of pressure, volume,
and temperature it was noted that the relations between these thermodynamic
quantities were very similar for many different gases. Therefore, one postulated
the so-called ideal gas laws and tried to explain why a real gas shows small (or
large) differences from these ideal gas laws. Of course, we now know that the
most important parameter for ideal gas behavior is the density n = N

V , and that
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the ideal gas laws are simply the limits of the correct functional dependencies to
zero density. It is just fortunate that almost every gas is close to ideal, otherwise
the development of thermal physics would have been completely different!

The quantum mechanical model of an ideal gas is simple. Take a box of
dimensions L × L × L, and put one particle in that box. If L is large, this is
certainly a low density approximation. The potential for this particle is defined
as 0 inside the box and ∞ outside. The energy levels of this particle are given
by

ε(nx, ny, nz) =
~2

2M

(π

L

)2

(n2
x + n2

y + n2
z) (3.85)

with nx ,ny, and nz taking all values 1,2,3,..... The partition function is easy to
calculate in this case

Z1 =
∑

nxnynz

e−βε(nxnynz) =

∑
nx

e
− ~2

2MkBT ( π
L )2

n2
x

∑
ny

e
− ~2

2MkBT ( π
L )2

n2
y

∑
nz

e
− ~2

2MkBT ( π
L )2

n2
z (3.86)

Define α2 = ~2π2

(2ML2kBT ) and realize that the three summations are independent.
This gives

Z1 =

( ∞∑
n=1

e−α2n2

)3

(3.87)

We cannot evaluate this sum, but if the values of α are very small, we can use
a standard trick to approximate the sum. Hence, what are the values of α?
If we take ~ ≈ 10−34Js, M ≈ 5 × 10−26kg (for A around 50), and L = 1m,
we find that α2 ≈ 10−38J

kBT , and α ¿ 1 translates into kBT À 10−38J . With
kB ≈ 10−23JK−1 this translates into T À 10−15K, which from an experimental
point of view means always. Keep in mind, though, that one particle per m3 is
an impossibly low density!

In order to show how we calculate the sum, we define xn = αn and ∆x = α
and we obtain

∞∑
n=1

e−α2n2
=

1
α

∞∑
n=1

e−x2
n∆x (3.88)

In the limit that ∆x is very small, numerical analysis shows that

∞∑
n=1

e−x2
n∆x ≈

∫ ∞

0

e−x2
dx− 1

2
∆x +O

(
e−

1
∆x

)
(3.89)

where the integral is equal to 1
2

√
π. The term linear in ∆x is due to the fact that

in a trapezoidal sum rule we need to include the first (n=0) term with a factor
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1
2 . The remainder of the error converges very rapidly in this case, because of
the special nature of the integrant. Therefore, for T À 10−15K we can replace
the sum by an integral and we find:

Z1 ≈
(√

π

2α

)3

(3.90)

Note that in the case α ¿ 1 we have Z1 À 1. Since this sum appears in the
denominator of the probability for a state, the probability of being in a given
state is very small.

The volume V of the box is L3 and the quantum concentration nQ(T ) is
defined by

nQ(T ) =
(

MkBT

2π~2

) 3
2

(3.91)

Combining these formulas leads to

Z1(T, V ) = V nQ(T ) (3.92)

Since we have one particle only, the density is n = 1
V and the condition Z1 À 1

is equivalent to n ¿ nQ(T ). For a normal gas (which is very dilute), this
is always obeyed, and we can replace sums by integrals. This is called the
classical limit. Discontinuities due to the discrete energy spectrum in quantum
mechanics are not important, and everything is smooth. On the other hand, if
n > nQ(T ) we need to do the sums. This is the case when the density is large
or the temperature is low.

We note that Z1 ∝ T
3
2 . The factor three is due to the presence of three

summations, one for each spatial coordinate. If we would be working in D
dimensions, this would be Z1 ∝ T

D
2 . Therefore, the internal energy is

U(T, V, N = 1) = kBT 2

(
∂Z1

∂T

)

V

=
D

2
kBT (3.93)

as expected for one particle.
What do we do with N particles? We assume that the energy states of

the particles are independent, and hence the energy of all particles together
is the sum of all one particle energies. This would suggest that Z(T, V, N) =
ZN

1 (T, V ). If the particles were distinguishable, this would be correct. But we
know from quantum mechanics that the particles are not distinguishable. Hence
we do not know which particle is in which state! Therefore, we propose that the
partition function for N particles in this box is given by

Z(T, V, N) =
1

N !
(Z1)N (3.94)

The presence of a power of N can be easily argued for, as we did above, but the
factor N ! is not clear. If we assume that the particles are indistinguishable, it
makes sense to divide by N !. This factor N ! did lead to a lot of discussion, and
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the more rigorous treatment which will follow will indeed justify it. Before this
more rigorous theory had been developed, however, experiments had already
shown that one needed this factor! Using this formula we obtain the results for
an ideal gas:

Z(T, V, N) =
1

N !
(V nQ(T ))N (3.95)

U = kBT 2

(
∂ log(Z)

∂T

)

V,N

=
3
2
NkBT (3.96)

F = −kBT log(Z) = kBT log(N !)−NkBT log(nQV ) (3.97)

Using Stirling’s formula and only keeping terms in F which are at least propor-
tional to N, we obtain

F = NkBT

(
log(

n

nQ(T )
)− 1

)
(3.98)

p = −
(

∂F

∂V

)

T,N

=
NkBT

V
(3.99)

S = −
(

∂F

∂T

)

V,N

= NkB

(
log(

nQ(T )
n

+
5
2

)
(3.100)

This last formula is called the Sackur-Tetrode relation.
If one ignores the N! in the definition of the partition function for N particles,

several problems appear. First of all, the argument of the logarithm in all
formulas would be nQ(T )V , and quantities like F and S would not be extensive,
i.e. they would not be proportional to N (but to N log N)! Also, the second
term in S would be 3

2NkB . S can be measured precise enough to show that we
really need 5

2 Hence these experiments showed the need of a factor N! (or at
least for an extra N log N −N).

The formula for the entropy is valid for an ideal gas, or for a gas in the
classical limit. Nevertheless, it contains factors ~ (through nQ(T )). That is
really surprising. In many cases the classical limit can be obtained by assuming
that ~ is small. Here that does not work. So why does ~ show up in a classical
formula? Interesting indeed.

The chemical potential follows from the Helmholtz free energy:

µ = kBT log(
n

nQ(T )
) (3.101)

A calculation of the grand partition function is also straightforward. We
find

Z(T, µ, V ) =
∑

N̂

zN̂ 1
N̂ !

(Z1)N̂ = ezZ1 (3.102)
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and the grand potential is

Ω(T, µ, V ) = −kBTzZ1 = −kBTeβµV nQ(T ) (3.103)

The average number of particles is −
(

∂Ω
∂µ

)
T,V

, leading to

N = eβµV nQ(T ) (3.104)

which is consistent with 3.101.
We can also check the Gibbs-Duhem relation. We find

TS − pV + µN = NkBT

(
log(

nQ(T )
n

+
5
2

)
− NkBT

V
V + kBT log(

n

nQ(T )
)N

(3.105)

TS − pV + µN =
3
2
NkBT (3.106)

which is equal to U indeed.
In the previous formulas we have assumed that we can replace the summa-

tions by integrations. Is that still valid for N particles? Could anything go
wrong? In replacing the sum by an integral we essentially wrote

Z1 = I(1 + ε) (3.107)

where the constant I represents the result obtained using the integral and ε
is the relative error. This error is proportional to α, which is proportional to
(V nQ(T ))−

1
3 . We can replace the summation by an integral is V nQ(T ) À 1.

For N particles we need to calculate

ZN
1 = IN (1 + ε)N ≈ IN (1 + Nε) (3.108)

as long as the error is small, or as long as Nε ¿ 1. This implies

N3 ¿ V nQ(T ) (3.109)

or

n ¿ nQ(T )N−2 (3.110)

and in the thermodynamic limit this is never obeyed!! That is strange. The
formulas that resulted from our partition function are clearly correct, but the
error in the partition function is not small! What went wrong? The answer is
that we are not interested in the error in the partition function itself, but in the
error in the Helmholtz free energy, because that is the relevant quantity for all
physics. In the Helmholtz free energy we have:

F = Fideal −NkBT log(1 + ε) (3.111)
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Our new condition is therefore that the second term is small compared to the
first term, or

| log(1 + ε)| ¿ | log(
n

nQ(T )
)− 1| (3.112)

We now take the same requirement as in the one particle case, and assume
that

n ¿ nQ(T ) (3.113)

which also implies V nQ(T ) À N or ε ¿ 1. This means that the left hand side
of 3.112 is much smaller than one. Since the right hand side is much larger
than one (note the absolute sign, the logarithm itself is large and negative!), the
Helmholtz free energy is indeed approximated by the formula we gave.

The inequality n ¿ nQ(T ) inspired the name quantum concentration. If
the concentration is comparable to or larger than the quantum concentration,
we have to use the series. Also, at that point quantum effects like the Pauli
principle will start to play a role. If the condition above is fulfilled, we are in
the classical limit

Hence everything seems OK. But there might be one last objection. We
need to take derivatives of the free energy, and is the derivative of the error
term small? The two terms in the free energy are:

Fideal = −NkBT

(
log(

n

nQ(T )
)− 1

)
(3.114)

and

Ftrunc = −NkBTε = −NkBTf(V, T )(V nQ(T ))−
1
3 (3.115)

where f(V, T ) is some function of order one. As an example, we take the deriv-
ative with respect to V, in order to get the pressure. The ideal gas result is
NkBT

V , and the derivative of the truncation error in the free energy has two
terms. One part comes from the last factor, and gives

1
3

NkBT

V
f(V, T )(V nQ(T ))−

1
3 (3.116)

which is again small if V nQ(T ) À N . The second part gives

−NkBT

V

[
V

(
∂f

∂V

)

T

(V, T )
]

(V nQ(T ))−
1
3 (3.117)

and could be large if f(V, T ) is an oscillating function. This is fortunately not
the case. Formula 3.89 tells us that f(V, T ) is equal to − 1

2 plus terms that are
exponentially small. The first part gives zero derivatives, and the second part
gives derivatives which are exponentially small.

The error analysis above is typical for fundamental questions in statistical
mechanics. In many cases it is ignored, and often without consequences. In



64 CHAPTER 3. VARIABLE NUMBER OF PARTICLES

the next chapter we will see that Bose-Einstein condensation is an example of
a natural phenomenon that would not be described at all if we ignored such an
error analysis. In fact, in the description of many phase transitions one needs
to be careful!

3.8 Problems for chapter 3

Problem 1.

The Helmholtz free energy of a system at an appropriate temperature is given
by F (V,N) = N log(N

V )−N .
1. Calculate the pressure and chemical potential.
M such systems, all with volume V, are in diffusive contact and in equilibrium.
In addition, there is a potential energy per particle Φi in system i. The total
number of particles in the M combined systems is N.
2. Find the number of particles in each of the subsystems.

Problem 2.

The quantum states of a given system have a variable volume. The energy of
state n is εn, while the volume of state n is νn. This system is at a given pressure
p.
a) Show that the probability of finding the system in state n is proportional to
e−β(εn+pνn).
b). In this case we define a partition function Z(T, p, N) =

∑
n

e−β(εn+pνn). Show

that the Gibbs energy G = U − TS + pV is related to Z by G = −kBT log(Z).
c) Find a formula relating the fluctuations in volume to the isothermal com-
pressibility.

Problem 3.

A system contains an ideal gas of atoms with spin 1
2 in a magnetic field

B(~r). The concentration of the spin up (down) particles is n↑(~r) ( n↓(~r) ). The
temperature is T.

(A) Evaluate the total chemical potential for the spin up and down particles.

(B) These two chemical potentials have to be the same and independent of ~r.
Explain why.

(C) Calculate the magnetic moment of this gas as a function of position.

(D) Show that the concentration of magnetic particles is high in regions with
a large magnetic field.
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Problem 4.

The state of a many body system is characterized by two quantum numbers,
n and m. The possible values of the quantum number n are 0, 1, 2, · · · ,∞, while
the values of m are in the range 0, 1, · · · , n. The energy of the system in the state
(n,m) is n~ω and the number of particles is m. Evaluate the grand partition
function for this system.

Problem 5.

An ideal gas of atoms with mass m is contained in a cylinder that spins
around with angular frequency ω. The system is in equilibrium. The distance
to the axis of the cylinder is r. The radius of the cylinder is R. Calculate the
density of the gas as a function of r.

Problem 6.

Extremely relativistic particles obey the relation E(~k) = ~c|~k|. Assume we
have a gas of these identical particles at low density, or n ¿ nQ(T ).

(A) Calculate the partition function Z1(T, V ) for N=1.

(B) Calculate Z(T, V, N).

(C) Calculate p(T, V, N), S(T, V, N), and µ(T, V,N).

Problem 7.

The chemical potential of an ideal gas is given by 3.101. Suppose n ¿
nQ(T ). In this case we have µ < 0. A bottle contains an ideal gas at such an
extremely low density. We take one molecule out of the bottle. Since µ < 0 the
Helmholtz free energy will go up. The equilibrium of a system is reached when
the Helmholtz free energy is minimal. This seems to favor molecules entering the
bottle. Nevertheless, we all know that if we open the bottle in an environment
where the density outside is lower than inside the bottle, molecules will flow
out. What is wrong with the reasoning in this problem?

Problem 8.

The only frequency of the radiation in a certain cavity is ω. The average

number of photons in this cavity is equal to
[
e
~ω

kBT − 1
]−1

when the temperature
is T. Calculate the chemical potential for this system.

Problem 9.
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A system can be in one of four states. These are

(1) No particles, zero energy

(2) One particle, energy ε1

(3) One particle, energy ε2

(4) Two particles, energy ε1 + ε2 + I

where ε2 > ε1 > 0 and I < 0. This sign of I is unusual. The temperature
is T and the chemical potential is µ. This is a very simple model, and in order
to make this realistic we should really consider many of these systems together.
That is not asked in this question, though.

(A) Calculate the grand partition function

(B) Calculate N(T, µ)

(C) Calculate
(

∂N
∂T

)
µ

and show that this can be negative. What does that
mean?



Chapter 4

Statistics of independent
particles.

4.1 Introduction.

Particle statistics.

If you think about the consequences of assuming a low density limit for a gas,
it comes to mind immediately that the interactions between the particles must
be very small. An ideal gas is defined as a gas of non-interacting particles in the
low density limit. If we leave out the low density, but still assume that there are
no interactions between the particles, quantum effects will start to play a role
and in that case the gas is a Bose or Fermi gas. Although one might object that
in this case it it not correct to ignore the inter-particle interactions, there are
enough systems where these interactions are small and a non-interacting gas is
a very good first approximation. This explains why it is useful at all to discuss
Fermi or Bose gases.

The treatment of the ideal gas in the previous chapter is useful, but it is not
a good starting point for more precise calculations. In this chapter we discuss
an approach which is very versatile, and can be used to include the effects of
particle statistics and interactions.

Orbitals.

The energy levels used in the previous section were the energy levels of a sin-
gle particle in a large box. What happens when we add a second particle to this
box? If the particles are really independent, the presence of this second particle
will not alter the energy levels of the first. Neither will the first particle influence
the energy levels of the second, and hence both particle will have the same set

67



68 CHAPTER 4. STATISTICS OF INDEPENDENT PARTICLES.

of energy levels available. These energy levels are called single particle states.
In order to avoid using the word state in two different meanings, we will follow
a standard approach and call these single particle states orbitals. One is used
to the word orbital for systems of electrons, but here it is generalized to systems
of arbitrary particles.

An example will help to describe this. Consider an atom, for which the
states of the electrons are given by the quantum numbers n, l, m. We lump these
quantum numbers together and use the symbol o, for orbital. The corresponding
energies depend, however, on the states of all other electrons. In Helium, for
example, the energy of an electron in the 1s state is different in the 1s22s0

configuration and in the 1s12s1 configuration. It is larger (more negative) in
the second case, because the 2s electron does not screen the nucleus as well as
the 1s electron. In this case there are many body effects, often described by the
word correlation. The energy levels are of the form εs

o, where s stands for the
state of the whole system.

Orbital energy of independent particles.

In an ideal gas we have a special situation. Here the particles do not interact,
and the energy of a particle is independent of the states of the other particles.
We say that there is no correlation, or no screening, and we can write

εs
o = εo (4.1)

for all orbitals o and in all states s of the total system. We say that the particles
are independent.

This is a useful approximation to make, but is it realistic? In a Helium
answer the answer is clearly no. But it turns out that for electrons in a metal
the independent electron approximation is not a bad starting point. Well, more
or less, as long as we replace the electrons by quasiparticles, that is electrons
with a corresponding empty space around them, out of which other electrons
have been repelled. For details, see books on solid state physics.

Total energy of independent particles.

A general many body state of a system with N particles is completely known
if we know how many particles are in each orbital. This defines a function of
the single particle orbital index o for each many body state s, ns

o. The energy
of this many body state in terms of the single particle orbital energies εo is

E(state s) =
∑

o

ns
oεo (4.2)

and of course we have

N(state s) =
∑

o

ns
o (4.3)
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If we add one particle to the system, we assume that the orbital energies for this
particle are the same as for the other particles. For most practical applications
it is not necessary that this is true for an arbitrary number of particles in the
system. Fluctuations in the number of particles are never very large and if the
two formulas only hold for a certain range of values of N around the equilibrium
value < N >, they are already useful and the subsequent discussion is valuable.
This is the case in metals. The energy levels of the conduction electrons in
a metal are in first approximation independent of the state of the electronic
system for many changes in N which are of importance, but certainly not for
changes starting with zero particles! Even for small changes in N one has to be
aware of processes where the orbital levels do change because the correlation
between the particles changes.

Inclusion of correlation.

For atomic systems, as mentioned before, these correlation effects are always
important and a typical formula for the energy of a rare earth atom with nf

electrons in the 4f shell is

E(nf ) = E(0) + nf εf +
1
2
n2

fU (4.4)

which introduces a Coulomb interaction U , which is of the same order of mag-
nitude as εf (a few eV). This also shows why a starting point of independent
particles can be very useful. The previous formula can be generalized to

E(state s) = E(0) +
∑

o

ns
oεo +

1
2

∑

o,o′
ns

on
s
o′Uo,o′ (4.5)

If the Coulomb interactions are small, we can try to find solutions using pertur-
bation theory, based on the starting point of the independent particle approx-
imation. Of course, it is also possible to extend the equation above to include
third and higher order terms!

Inclusion of quantum statistics.

How many particles can there be in one orbital? That depends on the nature
of the particles! If the particles are Fermions, we can only have zero or one
( no = 0, 1). If the particles are Bosons, any number of particles in a given
orbital is allowed. Hence in the independent particle formalism the effects of
quantum statistics are easy to include! This is another big advantage.

Calculation for independent subsystems.

Suppose a gas of non-interacting particles is in thermal and diffusive contact
with a large reservoir. Hence both the temperature T and the chemical poten-
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tial µ are specified. The volume V of the gas determines the orbital energies
εo(V ). We will now divide this gas in a large number of subsystems, each of
which contains exactly one orbital. If all these subsystems are in thermal and
diffusive equilibrium with the reservoir, they are in equilibrium with each other.
Therefore, the properties of the total system can be obtained by adding the
corresponding properties of all subsystems and the total system is really the
sum of the subsystems! The properties of each subsystem, or each orbital o,
follow from

Zo(T, µ, V ) =
?∑

n=0

e
n(µ−εo)

kBT (4.6)

because the energy of a state of the subsystem with n particles in the orbital
o is simple nεo. Quantum effects are still allowed to play a role here, and they
determine the upper limit of the summation. The Pauli exclusion principle for
fermions tells us that we can have at most one particle in each orbital and hence
for fermions there are only two terms in the sum. For bosons, on the other hand,
there is no such a restriction, and the upper limit is ∞.

Fermions.

We will first consider the case of Fermions. The grand partition function for
an orbital is

Z(T, µ, V ) = 1 + e
µ−εo
kBT (4.7)

Once we have the partition function for each orbital, we can calculate the average
number of particles < no > in that orbital. In terms of the probabilities Pn of
finding n particles in this orbital we have < no >= 0P0 + 1P1. Hence we find

< no >=
e

µ−εo
kBT

1 + e
µ−εo
kBT

=
1

e
εo−µ
kBT + 1

(4.8)

Hence the average number of particles in a subsystem depends on T and µ and
εo(V ). The only quantity of the orbital we need to know to determine this
average is the energy! No other aspects of the orbital play a role. In general,
the function of the energy ε which yields the average number of particles in an
orbital with energy ε is called a distribution function and we have in the case
of Fermions:

fFD(ε;T, µ) =
1

e
ε−µ
kBT + 1

(4.9)

This function is called the Fermi-Dirac distribution function. The shape of this
function is well known, and is given in figure (4.1).
The Fermi-Dirac distribution function has the following general properties:
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Figure 4.1: Fermi Dirac distribution function.

lim
ε→∞

fFD(ε; T, µ) = 0 (4.10)

lim
ε→−∞

fFD(ε; T, µ) = 1 (4.11)

fFD(ε = µ; T, µ) =
1
2

(4.12)

and the horizontal scale for this function is set by the product kBT . In the limit
T → 0 the Fermi-Dirac function becomes a simple step function, with value 1
for ε < µ and value 0 for ε > µ. Note that at ε = µ the value remains 1

2 !

Bosons.

In the case of Bosons the summation in the grand partition function goes
from zero to infinity and we have

Zo(T, µ, V ) =
∞∑

n=0

e
n(µ−εo)

kBT =
1

e
µ−εo
kBT − 1

(4.13)

which is only valid when µ < εo, or else the series diverges. This is an important
difference with the previous case, where µ could take all values. Here the possible
values of the chemical potential are limited! The average number of particles
follows from

< no >= kBT

(
∂ log(Zo)

∂µ

)

T,V

(4.14)

which gives
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< no >=
1

e
εo−µ
kBT − 1

(4.15)

Again, this only depends on the values of the temperature and chemical potential
(as given by the external reservoir) and the energy of the orbital. No other
properties of the orbital play a role. The distribution function for Bosons is
therefore

fBE(ε;T, µ) =
1

e
ε−µ
kBT − 1

(4.16)

This function is called the Bose-Einstein distribution function. The only dif-
ference with the Fermi-Dirac distribution function is the minus sign in the
denominator. This is a small difference, but with large consequences. The
Bose-Einstein distribution function has the following properties:

lim
ε→∞

fFD(ε; T, µ) = 0 (4.17)

lim
ε↓µ

fFD(ε; T, µ) = ∞ (4.18)

and it is the last infinity that is the cause of all differences. The big difference
between the two different distribution functions is the maximal value they can
attain. For fermions the distribution function never exceeds the value of one,
while for bosons there is no upper limit.

Limit of small occupation numbers.

It is possible to choose T and µ in such a manner that the value of the distri-
bution function is always much less than one for all orbital energies. In order to
use this argument it is essential that the orbital energy has a lower limit (which
is zero in our case of particles in a box). This requirement is quite natural.
All realistic Hamiltonians are bounded from below, and the energy spectrum
always has a minimum. The only exception is the Dirac Hamiltonian in first
quantization, but in that case the existence of negative energy states is easily
resolved in second quantization, where the negative energy states correspond to
positrons with normal positive energies.

The requirement for small occupation numbers is that

µ(T ) ¿ εmin − kBT (4.19)

Note that this does not mean that in the limit T → ∞ this inequality is not
obeyed! The chemical potential also has a temperature dependence which needs
to be taken into account. When the inequality above is valid, we have

e
ε−µ
kBT À 1 (4.20)
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and hence in the distribution functions the terms ±1 can be ignored. In that
case both distribution functions reduce to the same form

fMB(ε; T, µ) = e
µ−ε
kBT (4.21)

which is the Maxwell-Boltzmann function. Quantum effects do not play a role
anymore, since in this limit there is no distinction between Fermions and Bosons.
This is therefore the classical limit and an ideal gas is also called a Boltzmann
gas.

Use of distribution functions.

Once we have chosen the appropriate distribution function for our system,
it is easy to calculate thermodynamic variables. A general property Q of a
independent gas as a function of T, µ, and V follows from the values of Qo(V )
for all orbitals from

Q(T, V, µ) =
∑

orb

f(εo(V ); T, µ)Qo(V ) (4.22)

Two important examples are the number of particles and the internal energy

N(T, V, µ) =
∑

orb

f(εo(V ); T, µ) (4.23)

U(T, V, µ) =
∑

orb

f(εo(V ); T, µ)εo(V ) (4.24)

These two equation are sufficient to derive all of thermodynamics, although
we later will see that there is a better way of doing that. From the first equation
we can find by inversion µ(T, V, N) and then by integration F (T, V,N). The
second equation can be written as a function of T, V, N too when we substitute
µ. But in many cases we do not need that, and the strength of this approach is
really when we can use equation 4.22 directly. Note: in order for these sums to
converge, we always need µ < εo. In other words we need µ < εmin.

What have we gained by introducing this formulation of independent parti-
cles? The formulas we need still look very similar to those we used before. The
important difference, however, is the number of terms involved. If the number
of orbitals No is finite, the number of N particle states in the partition func-
tion is No

N for bosons and
(

N0
N

)
for fermions. Since in practice No À N the

numbers are very similar for bosons and fermions. This indicates that the sum
over many particle states in the general formalism is much more complicated
than the sum over orbitals in the independent particle systems! In many cases
the sum over orbitals reduces to an integral over a single variable, and these
integrals are easy to analyze. Only for very small systems (e.g. 3 orbitals, 2
particles) is the complexity of the general approach similar to the independent
particle formalism. But keep in mind that using distribution functions implies
independent particles!
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4.2 Boltzmann gas again.

An ideal gas is defined as a system of (1) free, (2) non-interacting particles in
the (3) classical regime. Restriction (1) means that there are no external forces,
beyond those needed to confine the particles in a box of volume V. Restriction (2)
means that there are no internal forces. Restriction (3) means that we can ignore
the quantum effects related to restrictions in occupation numbers. This means
that we use the Maxwell-Boltzmann distribution function. Restrictions (1) and
(3) are easy to relax. Most of solid state physics is based on such calculations,
where electrons can only singly occupy quantum states in a periodic potential.
Restriction (2) is much harder to relax, and many discussions in physics focus
on these correlation effects.

Ideal gas again.

In this section we derive the results for the ideal gas again, but now from
the independent particle point of view. This implicitly resolves the debate of
the factor N! The energy levels of the particles in the box are the same as we
have used before. The ideal gas follows the Boltzmann distribution function
and hence we find

N =
∑

orb

fMB(εo) =
∑

orb

e
µ−εo
kBT = e

µ
kBT Z1 (4.25)

We again introduce the quantum concentration nQ(T ) and solve for µ :

nQ(T ) =
(

MkBT

2π~2

) 3
2

(4.26)

µ = kBT log
(

n

nQ(T )

)
(4.27)

The requirement µ ¿ −kBT is indeed equivalent to n ¿ nQ(T ). The internal
energy is also easy to obtain:

U =
∑

orb

εoe
µ−εo
kBT = e

µ
kBT kBT 2 ∂

∂T

∑

orb

e
− εo

kBT (4.28)

U =
NkBT 2

Z1

(
∂Z1

∂T

)

N,V

=
3
2
NkBT (4.29)

as we had before. To get to the last step we used that Z1 is proportional to T
3
2 .

Always the same strategy.

In many cases one uses the formula for N in the same way we did here.
From it we solved for µ(T, N, V ) and we also obtained U(N,T,V) accordingly.
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Although the distribution functions depend on µ, it is often possible to use
this approach to obtain functions of N,T,V. Also note that for the ideal gas(

∂U
∂V

)
T,N

= 0 and hence that the pressure in an ideal gas is completely due to
the derivative of the entropy, as we have stated before. This is due to the fact
that

p = −
(

∂F

∂V

)

T,N

= −
(

∂U

∂V

)

T,N

+ T

(
∂S

∂V

)

T,N

(4.30)

In a real gas system, of course, a change in volume will change the average
distance between particles and hence the inter-particle interactions. This will
give a small correction to the formula for U, and hence a small contribution to
the pressure. In solids, on the other hand, the pressure is mainly due to the
change in interaction energy.

Summation of the chemical potential.

We have transformed our independent variables to the set T, V, N and there-
fore need to find the corresponding free energy. The Helmholtz free energy is
the important quantity and can be calculated as soon as µ(T, N, V ) is found, be-
cause µ =

(
∂F
∂N

)
T,V

. The Helmholtz free energy for a system with zero particles
is zero, and hence we have

F (N, T, V ) =
∫ N

0

µdN ′ =

∫ N

0

kBT log
(

N ′

V nQ(T )

)
dN ′ = NkBT

(
log(

n

nQ(T )
)− 1

)
(4.31)

where we used
∫ N

0
log(cN ′)dN ′ = N log(c) + N log(N)−N .

Formally, there is an objection against using an integral over the number of
particles when this number is small. Remember that the chemical potential is
the free energy needed to add one particle to the system, and hence a correct
expression for F is

F (N, T, V ) =
N∑

N̂=1

µ(N̂ , T, V ) =

N∑

N̂=1

kBT log

(
N̂

V nQ(T )

)
= kBT log(N !)−N log(nQ(T )V ) (4.32)

Here we used the fact that
∑N

N̂=1 log(cN̂) = N log(C) + log(N !). If N is very
large we can again use Stirling’s formula to show that this form really reduces
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to the previous expression. We replace log(N !) by N log(N)−N only, since all
other terms vanish in the thermodynamic limit.

Back to thermodynamics.

Once the Helmholtz free energy is known, the entropy and pressure can be
calculated and we obtain again

p = −
(

∂F

∂V

)

T,N

=
NkBT

V
(4.33)

S = −
(

∂F

∂T

)

V,N

= NkB

(
log(

nQ(T )
n

) +
5
2

)
(4.34)

Note that since n ¿ nQ(T ) the entropy is positive. This shows that we expect
differences if the density becomes comparable to the quantum concentration.
That is to be expected, because in that case there are states with occupation
numbers that are not much smaller than one anymore. Also note that this
classical formula for the entropy contains ~ via nQ(T ). This is an example of a
classical limit where one cannot take ~ = 0 in all results! The entropy in our
formalism is really defined quantum mechanically. It is possible to derive all of
statistical mechanics through a classical approach (using phase space, etc), but
in those cases ~ is also introduced as a factor normalizing the partition function!
We will discuss this in a later chapter.

Check of Euler equation.

The Gibbs free energy is defined by G = F + pV and is used for processes
at constant pressure. For the ideal gas we find

G = µN (4.35)

This result is very important as we will see later on. We will show that it holds
for all systems, not only for an ideal gas, and that it puts restrictions on the
number of independent intensive variables. Of course, from thermodynamics we
know that this has to be the case, it is a consequence of the Euler equation.

Heat capacities.

Important response functions for the ideal gas are the heat capacity at con-
stant volume CV and at constant pressure Cp. These functions measure the
amount of heat (T∆S) one needs to add to a system to increase the tempera-
ture by an amount ∆T :

CV = T

(
∂S

∂T

)

V,N

=
3
2
NkB (4.36)
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Cp = T

(
∂S

∂T

)

p,N

=
5
2
NkB (4.37)

where we have used
(

∂S

∂T

)

p,N

=
(

∂S

∂T

)

V,N

+
(

∂S

∂V

)

T,N

(
∂V

∂T

)

p,N

(4.38)

with
(

∂S
∂V

)
T,N

= NkB

V and
(

∂V
∂T

)
p,N

= NkB

p = V
T .

It is obvious that we need Cp > CV , since at constant pressure we have to do
work against the outside world. This is an example of an inequality in thermal
physics which relates two functions and holds in general for all systems. This
relation was derived in thermodynamics based on equilibrium principles, and
our current microscopic theory is in agreement with those general observations.

Ratio of heat capacities.

The ratio of the heat capacities is often abbreviated by γ and is used in a
number of formulas. For the ideal gas γ = Cp

CV
= 5

3 . From an experimental point
of view this is a useful ratio, since it can be measured directly. From equation
(4.38) we see that

γ = 1 +
(

∂S

∂V

)

T,N

(
∂V

∂T

)

p,N

((
∂S

∂T

)

V,N

)−1

(4.39)

γ = 1 +
(

∂S

∂V

)

T,N

(
∂V

∂T

)

p,N

(
∂T

∂S

)

V,N

(4.40)

γ = 1−
(

∂T

∂V

)

S,N

(
∂V

∂T

)

p,N

(4.41)

In any system where the ideal gas equation of state is pV = NkBT obeyed we
find

(
∂T

∂V

)

S,N

= (1− γ)
T

V
(4.42)

or in regions where γ is constant we see that for adiabatic processes T ∝ V 1−γ ,
which is equivalent to say that (again using the ideal gas law) for adiabatic
processes pV γ is constant.

4.3 Gas of poly-atomic molecules.

Internal motion is independent.



78 CHAPTER 4. STATISTICS OF INDEPENDENT PARTICLES.

In our discussion of the ideal gas we have assumed that the orbitals are
characterized by three quantum numbers nx, ny, and nz. These three quantum
numbers describe the motion of the center of mass of the particle, but did not
include any internal degrees of freedom. Therefore, the previous formulas only
are valid for a gas of mono-atomic molecules. A gas of poly-atomic molecules is
easily treated if we assume that the energy associated with the internal degrees
of freedom does not depend on (1) the presence of other particles and (2) the
motion of the center of mass. Hence the rotation of a diatomic molecule is not
hindered by neighboring molecules or changed by its own motion. In that case
we can write, using int for the collective internal degrees of freedom:

ε(nx, ny, nz, int) =
~2

2M

(π

L

)2

(n2
x + n2

y + n2
z) + εint (4.43)

Then internal degrees of freedom represent the rotational quantum numbers
(of which there are at most three) and the vibrational quantum numbers. If
we have a molecule with N atoms, there are 3N internal degrees of freedom.
Three are used for the center of mass, r for the rotations (r is 2 or 3) and hence
3(N − 1)− r for the vibrational state.

Changes in the partition function.

In the classical regime µ ¿ −kBT and hence λ = e
µ

kBT ¿ 1. In the partition
function for a given orbital terms with λ2 and higher powers can be neglected
for bosons and in all cases we find

Zo(T, µ, V ) = 1 + λ
∑

int

e
− εo+εint

kBT = 1 + λZinte
− εo

kBT (4.44)

where the internal partition function is defined by

Zint(T ) =
∑

int

e
− εint

kBT (4.45)

The average number of particles in orbital o, independent of its internal
state, is therefore given by

< no >=
∑

int

λe
− εint

kBT e
− εo

kBT

1 + λ
∑

int e
− εint

kBT e
− εo

kBT

≈ λZinte
− εo

kBT (4.46)

where we used the fact that the denominator is approximately equal to one
because λ is very small. Hence in the Boltzmann distribution function we have
to replace λ by λZint(T ) and we find

N = λZint(T )nQ(T )V (4.47)

µ = kBT

(
log(

n

nQ(T )
)− log(Zint)

)
(4.48)
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F = NkBT

(
log(

n

nQ(T )
)− 1

)
+ Fint(T, N) (4.49)

Fint(T, N) = −NkBT log Zint(T ) (4.50)

Experimental access to the internal degrees of freedom.

For the entropy and internal energy we also find formulas that show that
these quantities are the sum of the entropy/energy for the motion of the center
of mass plus a term pertaining to the internal degrees of freedom. Since we
have assumed that the energy of the internal motion does not depend on other
particles, Fint does not depend on volume and the ideal gas law pV = NkT
remains valid! The heat capacities do change, however, since the internal en-
ergy is different. Therefore, the value of the ratio γ is different. As we will
see later, the value of this ratio is a direct measure of the number of active
degrees of freedom. Hence by measuring the pressure-volume relation in adia-
batic expansion gives us direct information about the internal structure of the
molecules!

Do we have them all?

The entropy is the sum of the entropy associated with the center of mass
motion and the entropy of the internal state of the molecules. Hence the en-
tropy is now larger than the entropy of mono-atomic molecules. We need more
information to describe the state of large molecules, and hence we have more
”un-knowledge”, which translates into a larger entropy.

How do we know if we have all internal degrees of freedom accounted for?
In principle, we do not know, because there could always be hidden degrees of
freedom. For example, do we have to separate electrons and nuclëı? Neutrons
and protons? Quarks? Hence the real value of the entropy could even be larger
as what we calculated here. We can also ask the question from an experimental
point of view. In that case, the answer is simple, cool the system down to a low
temperature. But what is low? Sometimes we see phase transitions at very low
temperatures, and we are never sure if we went low enough. For example, the
nuclear spins could order below a certain temperature, and the values of such
temperatures are small indeed.

4.4 Degenerate gas.

The entropy of an ideal or Boltzmann gas is given by the Sackur-Tetrode for-
mula. The temperature enters this equation through the quantum concentra-
tion. In the limit T → 0, the entropy is approximately 3

2NkB log(T ) and ap-
proaches −∞, which is obviously incorrect. The Sackur-Tetrode formula is not
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valid anymore, because the condition n ¿ nQ(T ) ∝ T 1.5 will not be true for
small temperatures. Every gas will show deviations from ideal gas behavior
at low temperatures. A gas is called a quantum gas or degenerate gas when
n ≈ nQ(T ). In a degenerate gas the differences between fermions and bosons
become important.

At these higher densities the interactions between the particles also play a
role, but the independent particle description is still a very good first approx-
imation for most quantities. Inter-particle interaction can be included using
perturbation theory. Of course, when n À nQ(T ) that approach does not work
anymore, and one really has to start with a model including inter-particle in-
teractions.

An estimate of the temperature T0 where these effects start to play a role
comes from solving the equation n = nQ(T0). We will calculate some typical
examples of T0. A gas of helium atoms has a density of about 2.5 × 1025m−3.
With M ≈ 4 × 10−27kg, ~ ≈ 10−34Js, and kB ≈ 10−23JK−1 we get T0 ≈ 1K.
Although helium is a liquid at these temperatures, special effects are seen in 4He
and also there are big differences between 4He and 3He at these temperatures.

Electrons in a metal have much higher densities that normal gases. A typical
number is n ≈ 1029m−3. With M ≈ 10−30kg we find T0 ≈ 105K. Such an
electron gas is always degenerate, and the Pauli principle has to be taken into
account. This is clearly seen in the physics of metals. The famous exchange
energy for the electrons in a solid has to be taken into account. The conduction
electrons in a semiconductor, on the other hand, have much lower densities.
A typical range is 1023 · · · 1026m−3, and hence T0 ranges from 10K to 1000K.
At room temperature the electron gas in a semiconductor can be classical or
degenerate, depending on the doping. This leads to interesting effects in these
semiconductors.

4.5 Fermi gas.

Quantum gases come in two varieties, named after Fermi and Bose. There are
some other cases of theoretical interest, but they are probably not important
from a practical point of view. If the particles in a gas have integral spin we
need Bose-Einstein statistics, if the spin is half-integral Fermi-Dirac statistics.
We will first study a gas of identical, independent particles obeying Fermi-
Dirac statistics. Kittel’s book has a number of simple examples and is a good
source of information for simple techniques. The same techniques are used in
Sommerfeld’s theory of the conduction electrons in a metal, and hence any text
book on solid state physics will also be useful.

Fermi energy.

The average number of particles in an orbital with energy ε is given by the
Fermi-Dirac distribution function
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fFD(ε) =
1

e
ε−µ
kBT + 1

(4.51)

The chemical potential µ depends on the temperature and the value of µ at
T = 0K is called the Fermi energy µ(T = 0) = εF . It is easy to show that in
the limit T → 0 the Fermi-Dirac function is 1 for ε < µ and 0 for ε > µ. The
chemical potential follows from

N =
∑

orb

fFD(εo) = g
∑

nxnynz

fFD(ε(nx, ny, nz)) (4.52)

where g = 2S+1 is the spin degeneracy; g = 2 for electrons. The spin factors out
because the energy levels do not depend on spin, only on the spatial quantum
numbers. Note that we use the fact that the particles are identical, we only
specify the number of particles in each orbital, not which particle is in which
orbital! The description is slightly more complicated when magnetic fields are
included, adding a dependency of the energy on spin.

Convergence of series.

When we have an infinite sum, we always need to ask the question if this
series converges. This means the following:

∞∑
n=1

xn = S (4.53)

if we can show that for SN =
∑N

n=1 xn the following is true:

lim
N→∞

SN = S (4.54)

This means that for any value of ε > 0 we can find a value Nε such that

N > Nε ⇒ |SN − S| < ε (4.55)

If the terms in the series are dependent on a variable like the temperature, we
need to ask even more. Does the series converge uniformly? In general we want

∞∑
n=1

xn(T ) = S(T ) (4.56)

and this is true if for every ε > 0 we can find a value Nε(T ) such that

N > Nε(T ) ⇒ |SN (T )− S(T )| < ε (4.57)

The problem is that the values of Nε depend on T . What if, for example,
limT→0 Nε(T ) does not exist? Than the sum of the series is not continuous at
T = 0. That is bad. In order to be able to interchange limits and summations,
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we need absolute convergence, that is we need to be able to find a minimum value
of N for which the partial sum is a good approximation for all temperatures.
Hence we need for every ε > 0 we a value Nε such that

N > Nε ⇒ |SN (T )− S(T )| < ε (4.58)

In that case we can interchange summation and limits, and can integrate the
sum of the series by integrating each term and sum the resulting integrals.

In our case, for large values of the quantum numbers the energy is very large
and the distribution function can be approximated by

lim
ε→∞

fFD(ε) ≈ e
µ−ε
kBT (4.59)

Hence the terms in the series for N decay very rapidly. If we consider a tem-
perature interval [0, Tmax] we always have that e

−ε
kBT e

−ε
kBTmax . Therefore we

can always use the value at Tmax to condition the convergence of the series.
Hence we find that the series converges uniformly on the interval [0, Tmax], with
endpoints included. We may interchange the limit T → 0 and the sum and get

N =
∑

orb

Θ(εF − εo) (4.60)

If we use free particle energies, which are always positive, we find immediately
that εF > 0 because N > 0. Note that the only problem is when we take
T → ∞. That limit needs to be analyzed separately, since we now have an
infinite number of infinitesimally small terms to sum. We will see later how
to deal with that limit. We already know the answer, though, from a previous
section. At large temperatures we can replace the sum by an integral, if the
orbital energies are free particle energies. This is always true for large quantum
numbers, due to Bohr’s correspondence principle.

Grand partition function.

The grand partition function for a Fermi gas involves a sum over states.
If we enumerate the orbitals for the independent particles, a state of the total
system can be specified by the occupation of each orbital, or by a set of numbers
{n1, n2, . . .}. Here ni denotes the number of particles in orbital i. Since we are
dealing with fermions ni is zero or one only. Examples of states are {0, 0, 0, . . .}
for a state with no particles or {1, 1, 0, . . .} for a state with one particle in orbit
1 and in orbit 2.

The grand partition function is

Z(T, µ, V ) =
∑

{n1,n2,...}
e

1
kBT (µN({n1,n2,...})−E({n1,n2,...})) (4.61)

The total number of particles is easy to find:
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N({n1, n2, . . .}) =
∑

o

no (4.62)

The energy is in general harder to find. But we now make again the assumption
that the particles are independent. This allows us to write for the energy:

E({n1, n2, . . .}) =
∑

o

noεo (4.63)

where the many body energy E({n1, n2, . . .}) simply is equal to the sum of
the single particle energies εo corresponding to occupied states. The grand
partition function can now be written in the form

Z(T, µ, V ) =
∑

{n1,n2,...}
e

1
kBT

∑
o(µ−εo)no (4.64)

Z(T, µ, V ) =
1∑

n1=0

1∑
n2=0

· · ·
1∑

ni=0

· · ·
∏
o

e
1

kBT (µ−εo)no (4.65)

Z(T, µ, V ) =

(
1∑

n1=0

e
1

kBT (µ−ε1)n1

)(
1∑

n2=0

e
1

kBT (µ−ε2)n2

)
· · · (4.66)

Since the summation variables are just dummy variables, this is equal to

Z(T, µ, V ) =
∏

orb

(
1∑

n=0

e
1

kBT (µ−εo)n

)
=

∏

orb

Zo(T, µ, V ) (4.67)

where we have defined the orbital grand partition function Zo as before by:

Zo =
1∑

n=0

e
n µ−εo

kBT (4.68)

The grand partition function for a subsystem with a single orbital is therefore
given by Zo = 1 + e

µ−εo
kBT .

Note that there is no factor N! in front of the product in (4.67), unlike we
had before for the ideal gas partition function. The essential difference is that in
the formula above the product is over orbitals and these are distinguishable.
Previously we had a product over particles and those are identical.

Grand Energy.

The grand energy follows from

Ω(T, µ, V ) = −kBT log(Zo) = −kBT
∑

orb

log(Zo(T, µ, V )) (4.69)
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and the product has become a sum as expected. The energy should be the
sum of the energies of the subsystems, and this implies a product in the grand
partition function since the energy always needs the logarithm of this grand
partition function.

Once the grand energy is available, all thermodynamic variables can be ob-
tained. For example, the number of particles follows from

N = −
(

∂Ω
∂µ

)

T,V

= kBT
∑

orb

1
Zo(T, µ, V )

(
∂Zo(T, µ, V )

∂µ

)

T,V

(4.70)

or

N =
∑

orb

e
µ−εo
kBT

1 + e
µ−εo
kBT

=
∑

orb

fFD(εo; T, µ) (4.71)

as expected.

Entropy of a system of Fermions.

A useful formula for the entropy expresses the entropy in terms of the dis-
tribution functions.

S = −
(

∂Ω
∂T

)

µ,V

= kB

∑

orb

log(Zo(T, µ, V )) + kBT
∑

orb

(
∂ log(Zo(T, µ, V ))

∂T

)

µ,V

(4.72)

S = kB

∑

orb

log(1 + e
µ−εo
kBT ) + kBT

∑

orb

e
µ−εo
kBT

1 + e
µ−εo
kBT

µ− εo

−kBT 2
(4.73)

With the help of:

e
µ−ε
kBT =

1

e
ε−µ
kBT

=
1

e
ε−µ
kBT + 1− 1

=

1
1

fF D
− 1

=
fFD

1− fFD
(4.74)

we get

S = kB

∑

orb

log(1 +
fFD

1− fFD
)− kB

∑

orb

fF D

1−fF D

1 + fF D

1−fF D

log(
fFD

1− fFD
) (4.75)

S = −kB

∑

orb

log(1− fFD)− kB

∑

orb

fFD log(
fFD

1− fFD
) (4.76)
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S = −kB

∑

orb

(fFD log(fFD) + (1− fFD) log(1− fFD)) (4.77)

This is very similar to the expression we had before in terms of probabilities.
The big difference is again that this time we sum over orbitals. When we
summed over many body states we had S = −kB

∑
s Ps log(Ps). But now

we sum over single particle orbitals, which is a much simpler sum. We can
remember the formula above by the following analogy. For each orbital there
are two states, it is either occupied or empty and the first term in the expression
for S is related to the probability of an orbital being occupied, the second to
the probability of the orbital being empty.

4.6 Boson gas.

Only a minus sign different!

The treatment of a gas of identical, independent bosons is almost identical to
that for fermions. There is one important exception, though. The distribution
function for bosons is

fBE(ε) =
1

e
ε−µ
kBT − 1

(4.78)

for which we need that µ < min(ε), otherwise the number of particles in a
given orbital with energy below µ would be negative! The fermion distribution
function is always less than one, but for bosons the distribution function can take
any positive value depending on how close µ is to ε in units of kBT . Obviously,
since f(ε) is a monotonically decreasing function of ε the orbital with the lowest
energy will have the largest population and this orbital will cause problems in
the limit µ → min(ε).

Grand partition function.

The grand partition function is calculated in a similar way as for fermions,
with the important difference that the number of particles in each orbital can
be between zero and infinity

Z(T, µ, V ) =
∞∑

n=0

∞∑
n2=0

∑
ni

e
1

kBT (µ
∑

o no−
∑

o noεo) (4.79)

Z(T, µ, V ) =
∞∑

n=0

∞∑
n2=0

∑
ni

∏

orb

e
no

kBT (µ−εo) (4.80)
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Z(T, µ, V ) =
∏

orb

[ ∞∑
n=0

e
n(µ−εo)

kBT

]
=

∏

orb

Zo(T, µ, V ) (4.81)

The only difference is the limit of the summation now going to infinity. The
partition function for one orbital is in this case

Zo(T, µ, V ) =
1

1− e
µ−εo
kBT

(4.82)

and is always positive since µ < min(ε).
The grand potential follows from

Ω(T, µ, V ) = −kBT
∑

orb

log(Zo(T, µ, V )) (4.83)

in the same way we found for fermions. The total number of particles is equal
to minus the derivative of Ω with respect to µ, and is, of course:

N = −
(

∂Ω
∂µ

)

T,V

=
∑

orb

fBE(εo) (4.84)

because

(
∂ log Zo

∂µ

)

T,V

=
1

kBT
Z−1

o

e
µ−εo
kBT

(1− e
µ−εo
kBT )2

(4.85)

which is equal to the distribution function divided by kBT .
A very useful formula for the entropy, again relating the entropy to proba-

bilities, is

S = −
(

∂Ω
∂T

)

V,µ

=

−kB

∑

orb

(fBE(εo) log(fBE(εo))− (1 + fBE(εo)) log(1 + fBE(εo))) (4.86)

The second term always gives a positive contribution, but the first term is
negative if fBE(εo) > 1. But since we can combine terms according to

S = kB

∑

orb

(
fBE(εo) log(

1 + fBE(εo)
fBE(εo)

) + log(1 + fBE(εo))
)

(4.87)

we see that each negative term in equation (4.86) is cancelled by a larger positive
term, because the first term in this expansion is always positive. The second
term in equation (4.86) does not have a simple physical interpretation, but is
directly related to the physical phenomenon of stimulated emission.
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4.7 Problems for chapter 4

Problem 1.

Imagineons have weird statistics. The number of particles in a given orbital
can be 0,1, or2.

( A.) Calculate the Imagineon distribution function fI(ε).

( B.) Sketch the shape of this function with ε in units of kBT .

Fermions with spin 1
2 can also have two particles in one orbital (in the traditional

sense the word orbital does not include a spin quantum number, like the 1s
orbital in an atom).

( C.) Calculate the distribution function for the number of particles in each
orbital.

( D.) Why is this result the same/different from the result of B?

Problem 2.

Assume that for a system of N fermions the Fermi level coincides with the
energy level of M orbitals.

(A.) Calculate the entropy at T = 0.

(B.) In the thermodynamic limit N → ∞ this entropy is non-zero. What do
you know about M in this case?

Problem 3.

Starting with Ω(T, µ, V ) = −kBT
∑

orb log Zorb(T, µ, V ) for a system of in-
dependent, identical bosons, show that the entropy is given by

S = −kB

∑

orb

(fBE(εo) log(fBE(εo))− (1 + fBE(εo)) log(1 + fBE(εo))) (4.88)

Problem 4.

The Maxwell distribution function fM is given by fM (ε; T, µ) = e
1

kBT (µ−ε).
Show that
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S(T, µ, V ) = NkB −
∑

o

fM (εo; T, µ) log(fM (εo;T, µ))

where the sum is over orbitals.

Problem 5.

Consider a system of independent particles. The number of orbitals with
energy between E and E + dE is given by N(E)dE. The function N(E) is
called the density of states. One measures the expectation value of a certain
operator O. For a particle in an orbital o the value of the operator depends only
on the energy of the orbital, or Oo = O(εo). Show that in the thermodynamic
limit the ensemble average of the operator is given by

< O >=
∫ ∞

−∞
O(E)N(E)f(E;T, µ)dE

where f(E; T, µ) is the distribution function for these particles.

Problem 6.

The orbital energies of a system of Fermions are given by εi = i∆ , with
∆ > 0 and i = 1, 2, 3, · · · ,∞. These energies are non-degenerate. If the system
has N particles, show that the low temperature limit of the chemical potential
gives εF = (N + 1

2 )∆.

Problem 7.

The entropy for a system of independent Fermions is given by

S = −kB

∑
o

(fFD log(fFD) + (1− fFD) log(1− fFD))

Calculate lim
T→0

fFD(ε, T, µ) for ε < µ ,ε = µ , and ε > µ.

The number of orbitals with energy εo equal to the Fermi energy εF is M .
Calculate the entropy at T = 0 in this case.

Explain your answer in terms of a multiplicity function. Pay close attention
to the issue of dependent and independent variables.



Chapter 5

Fermi and Bose systems of
free, independent particles.

5.1 Fermions in a box.

All the formulas we have derived for the thermodynamic variables of an inde-
pendent Fermi gas contain a sum over orbitals. One would like to convert these
sums to integrals in order to use standard analytical techniques. In order to do
this we need to know the details of the single particle energies. Without such
further knowledge we cannot derive results in more detail.

Free, independent particles.

We still assume that the particles are independent. Also, in the simplest
case we assume that there are no external forces acting on the particles. This
is easy when we assume that the energy of the orbital is given by the energy
levels of a particle in a box. Of course, there are the implicit forces due to the
pressure on the sides of the box, but these forces are taken into account by our
boundary conditions. When we are done with our calculations, the pressure
needed to keep the box at a constant volume will follow automatically. We also
assume that the box is a cube. This is not essential, but makes the mathematics
easier. The sides of the cubic box are of length L and the energy levels are

ε(nx, ny, nz) =
~2

2M

(π

L

)2

(n2
x + n2

y + n2
z) (5.1)

As we have done before, we define a wave vector ~k by ~k = π
L (nx, ny, nz). We

use this wave vector to label the single particle orbitals. We also need a spin
label, but at this point we assume that there are no magnetic effects. The set
of wave vectors is discrete, with step sizes ∆kx = ∆ky = ∆kz = π

L . Therefore,
any sum over orbitals is equal to

89
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∑

orb

= (2S + 1)
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

(5.2)

If h(ε) is an arbitrary function of the energy we have

∑

orb

h(εo) = (2S + 1)
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

h(ε(nx, ny, nz)) (5.3)

Since the orbital energies do not depend on spin the summation over spins
simply gives us a factor 2S + 1.

Integrals are easier.

Next, we transform the summation variables to ~k and multiply by 1 =
∆kx∆ky∆kz( π

L )−3. This gives:

∑

orb

h(εo) = (2S + 1)(
L

π
)3

∑

~k

h(ε(~k))∆kx∆ky∆kz (5.4)

If L is large enough the sum can be replaced by an integral and we have ( with
V = L3 ):

1
V

∑

orb

h(εo) =
2S + 1

π3

∫

pos

d3k h(
~2k2

2M
) + error (5.5)

where the k-integration runs over all k-vectors with positive components. If we
extend the integral over all of k-space, using the fact that ε(~k) is symmetric, we
get

1
V

∑

orb

h(εo) =
2S + 1
(2π)3

∫
d3k h(

~2k2

2M
) + error (5.6)

This gives, of course, the additional factor 23. The error is typically of order 1
V

and hence is unimportant in the limit V →∞. Practical calculations always use
a finite value for V and in that case the magnitude of the error is determined
by the smoothness of the function h on a scale π

L ! This is an important point
to keep in mind.

Grand partition function.

The grand energy for a gas of fermions is

Ω(T, µ, V ) = −(2S + 1)kBT
∑

nx,ny,nz

log(Znx,ny,nz (T, µ, V )) (5.7)

with
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Znx,ny,nz
(T, µ, V ) = 1 + e

µ−ε(nx,ny,nz)
kBT (5.8)

We now introduce again λ = e
µ

kBT , which is always positive, and if we are
allowed to replace the sum by an integral we obtain:

1
V

Ω(T, µ, V ) = −(2S + 1)(2π)−3kBT

∫
d3k log(1 + λe

− ~2k2
2MkBT ) (5.9)

Formulas like these make it clear that we really want to use kB for the Boltzmann
constant, in order to avoid confusion with the norm of the wave vector, k.

Free particles have a simple volume dependence!

One remarkable thing happened. The right hand side does not depend on
volume anymore! When we had a summation over discrete k-vectors, the volume
dependence was included in these vectors. But when we changed to a continuous
summation (or integration), this volume dependence disappeared, and the only
volume dependence is a simple pre-factor V , a linear behavior!

Those mathematical details!

What could go wrong here? There is an error associated with the change
from summation to integration, and in general we have:

1
V

Ω(T, µ, V ) =
[
−(2S + 1)(2π)−3kBT

∫
d3k log(1 + λe

− ~2k2
2MkBT )

]
[1 + E(T, V, µ)]

(5.10)
where we know that limV→∞ E(T, V, µ) = 0. But we would like to be able to
differentiate the result with respect to T and µ, and hence we need to require
uniform convergence! But that in turn also begs the question if the original
series is uniformly convergent! In order to discuss the convergence properties
we have to take two steps. First, we have to show that the series converges
uniformly. Second, we have to show that the series in the thermodynamic limit
converges uniformly to the integral. We will discuss the uniform convergence of
the series first. The important thing to notice is that both the integral and the
series converge.

For large values of the wave vector the terms in the series behave like:

tnx,ny,nz = log(1 + λe
− ε(nx,ny,nz)

kBT ) ≈ λe
− ε(nx,ny,nz)

kBT (5.11)

which approaches zero exponentially fast. Next we consider a domain in (T, µ, L)
space with 0 6 T 6 Tm , −∞ 6 µ 6 µm , and 0 6 L 6 Lm. It is clear that for
large values of the indices we have
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tnx,ny,nz
6 e

µm
kBT − ~2π2

2ML2
mkBTm

(n2
x+n2

y+n2
z)

(5.12)

which means that the series for arbitrary values of T , µ, and L converges faster
than for the maximal values. Hence we can use the maximal values of T , µ ,
and L to describe the convergence of the series in general, and hence the series
converges uniformly on 0 6 T 6 Tm , −∞ 6 µ 6 µm, and 0 6 L 6 Lm.

Next we consider a domain for (T, µ, L) space with T ′m 6 T , L′m 6 L , and
−∞ 6 µ 6 µm. The argument of the exponent in (5.7) is

ε(nx, ny, nz)
kBT

=
~2π2

2MkBTL2
(n2

x + n2
y + n2

z) = x2
nx

+ y2
ny

+ z2
nz

(5.13)

with xnx
= nx

√
~2π2

2MkBTL2 and similar for the y and z components. The size of
the steps therefore approaches zero when the temperature becomes very large or
when L becomes very large. Therefore, if we can replace the sum by an integral
with a certain error at a certain temperature or length, the error will be smaller
at all higher temperatures and lengths.

We now make the following observation. Suppose we choose a tolerance
ε. Because of the uniform convergence of the series we can find a value Nε

independent of T , µ , and L ( but with 0 6 T 6 Tm , −∞ 6 µ 6 µm, and
0 6 L 6 Lm ) such that:

∣∣∣∣∣∣
−(2S + 1)kBT

N∑
nx=1

N∑
ny=1

N∑
nz=1

log(Znx,ny,nz (T, µ, V ))− S(T, µ, V )

∣∣∣∣∣∣
< ε (5.14)

for all values of N with N > Nε. Next, use I(T, µ, V ) for the result of the
integral. We can find values of T ′m and L′m in such a manner that

∣∣∣∣∣∣
−(2S + 1)kBT

∞∑
nx=1

∞∑
ny=1

∞∑
nz=1

log(Znx,ny,nz (T, µ, V ))− I(T, µ, V )

∣∣∣∣∣∣
< ε (5.15)

for all values of the temperature with T > T ′m and L > L′m. The last equation
implies that the series converges, which we already knew, but does not require
uniform convergence.

We are now able to make the following statement. Consider a domain −∞ 6
µ 6 µm , T ′m 6 T 6 Tm , and V ′

m 6 V 6 Vm. On this domain the series for
the grand partition function converges uniformly and the sum is close to the
value of the integral. We will choose both Tm and Vm very large. We will also
choose T ′m very small. Since temperature and volume are multiplied together
(via the term TL2 ), this means that we need to consider very large values of
the volume only. Hence for any value of µ and T in any interval −∞ 6 µ 6 µm,
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T ′m 6 T 6 Tm we can choose a range of volumes so that the series converges
uniformly and is arbitrarily close to the integral, with an error independent of
the values of µ and T . Therefore, we can replace the series by the integral for
all such values of µ and T , and if the volume is arbitrarily large, the error is
arbitrarily small in a uniform manner. As a result, the thermodynamic limit,
which we need to take at the end, will not change the results from what we
obtained by using the integral.

There are still three problem areas. What if µ →∞? What if T → 0? What
if T → ∞? The last case is the easiest. If the temperature is very large, the
series is very close to the integral for all volumes that are larger than a certain
value and all values of µ in the range −∞ 6 µ 6 µm. The latter is true, since
the values of the second order derivative which determine the error are largest
at µm, and hence this value can be used for uniform convergence criteria. The
limit T → 0 is very important and will be discussed after the next paragraph.

What about µ → ∞? It turns out that this limit is equal to the limit of
infinite density. Although we often do calculations at large densities, this limit
is not of physical interest since the behavior of the system will be very different
from what we are interested in.

There is, however, one more detail. If we replace the summation by an
integral, the error is also proportional to the value of the second order derivative
of the function somewhere in the interval. If this second order derivative is
bounded, there is no problem. If it can go to infinity, there is a problem. As we
will see, for fermions there are no problems. But it is good to address this issue
for fermions, because after this we will study bosons where there are problems
with replacing the sum by an integral. The resulting errors do show up in
physics, and are the cause of Bose-Einstein condensation!

The function in the integrant is

log(1 + λe
− ~2k2

2MkBT ) (5.16)

and is smoothly decaying. The largest order derivatives are when k → 0 and are
inversely proportional to the temperature. So the only problem area is when
T → 0. In this limit the series has no convergence properties, but we need to
investigate whether the series converges to the value of the integral. In this
limit the first few terms are so important, that they determine the behavior of
the series.

The argument of the summation drops from a value of log(1 + e
µ

kBT ) at the
origin of k-space to 0 at infinity. When T is very small, though, the value of the
logarithm near the origin becomes very large, and it seems that we need a very
dense mesh in k-space to be able to convert the series to an integral with a small
error. Hence one should take the limit V → ∞ before the limit T → 0, which
is not the correct procedure. For fermions this turns out not to be necessary.
Because the series converges uniformly we are able to interchange summation
and limit and find
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Ω(0, µ, V ) = −(2S + 1)
∑

nx,ny,nz

lim
T→0

kBT log(Znx,ny,nz
(T, µ, V )) (5.17)

with

Znx,ny,nz (T, µ, V ) = 1 + e
µ−ε(nx,ny,nz)

kBT (5.18)

The limit of the argument is easy, since µ(0) = εF (N) > 0. Therefore the
argument is µ− ε(nx, ny, nz) if µ > ε(nx, ny, nz), because in that case we have

Znx,ny,nz
(T, µ, V ) ≈ e

µ−ε(nx,ny,nz)
kBT (5.19)

and

kBT log(Znx,ny,nz
(T, µ, V )) ≈ kBT

µ− ε(nx, ny, nz)
kBT

(5.20)

The argument is 0 if µ < ε(nx, ny, nz), because now the function Znx,ny,nz (T, µ, V )
approaches 1 rapidly. As a result we have

Ω(0, µ, V )
V

= −2S + 1
(2π)3

∫
d3k(µ− ε(~k))Θ(µ− ε(~k)) + error (5.21)

with Θ(x) being the well-known step function: Θ(x) = 0 for x < 0 and 1 for
x > 0. In this case the error also goes to zero for V → ∞, only in a different
algebraic manner. This shows that we can use

Ω(T, µ, V )
V

= −2S + 1
(2π)3

∫
d3kkBT log(1 + e

µ− ~2k2
2M

kBT ) (5.22)

for all values of T on [0, Tm] and also in the limit T → 0 with an error less than
a small number which only depends on V and not on T. The limit for small
temperatures in the last general form of the integral is the same step function
we need for the integral that is equal to the sum for T = 0. Therefore, we
have shown that in the limit T → 0 the series also converges to an integral,
and that this is the same integral we obtain by taking the limit T → 0 of the
general form. Hence we can use the general form of the integral for all our
calculations and derive low temperature series expansions, for example. This
situation will be very different for bosons, where these two forms are not the
same, and Bose-Einstein condensation occurs!

Why bother?

So we went through all this math stuff and found that there was nothing
special. Why bother? Why would there be anything special? The answer is very
simple and important. Every time a convergence fails, we have a singularity and
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non-analytic behavior. The physics of such behavior is a phase transition! Hence
if we do not discuss convergence issues properly, we will miss many important
phase transitions! For example, if we replace sums by integrals for bosons, we
see no Bose-Einstein condensation.

Evaluating the integral.

Our task is to evaluate:

1
V

Ω(T, µ, V ) = −(2S + 1)(2π)−3kBT

∫
d3k log(1 + λe

− ~2k2
2MkBT ) (5.23)

The integral is changed into a simple form by a coordinate transformation.
Define

~x =
(

~2

2MkBT

) 1
2
~k (5.24)

and we obtain

1
V

Ω(T, µ, V ) = −(2S + 1)(2π)−3kBT

(
~2

2MkBT

)− 3
2

∫
d3x log(1 + λe−x2

)

(5.25)
After integrating over the angular variables we find

1
V

Ω(T, µ, V ) = −(2S+1)(2π)−3kBT

(
~2

2MkBT

)− 3
2

4π

∫ ∞

0

x2dx log(1+λe−x2
)

(5.26)
Next we introduce the thermal wavelength

λT =
(

2π~2

MkBT

) 1
2

(5.27)

which is approximately the de-Broglie wavelength of a particle with energy
kBT . Again, this combination is introduced for historical reasons to simplify
the formulas. The result is a small difference from the purist definition of a
de-Broglie wavelength. Note that nQ(T ) = λ−3

T . At the quantum density a
cube of dimension de-Broglie wavelength contains one particle. In other words,
the average distance between particles is the de-Broglie wavelength, and it is no
surprise that quantum effects will be important!

We also introduce a function f 5
2
(λ) by

f 5
2
(λ) =

4√
π

∫ ∞

0

x2dx log(1 + λe−x2
) (5.28)
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The notation 5
2 will become clear in a moment. This function was carefully

analyzed, an important occupation before the days of computers when series
expansions were badly needed to get numbers. Even now they are important
since we can often use simple limit forms of these analytical functions in model
calculations. The grand energy is

Ω(T, µ, V ) = − (2S + 1)︸ ︷︷ ︸
spin

degeneracy

V︸︷︷︸
simple
volume

dependence

kBT︸︷︷︸
energy
scale

λ−3
T︸︷︷︸

volume
scale

f 5
2
(λ)

︸ ︷︷ ︸
density
effects

(5.29)

The right hand side is independent of volume, depends on µ only via f 5
2
(λ) and

on T in three places.

Density dependence.

The function f 5
2
(λ) has some simple properties. For large values of x one

can expand the logarithm and the integrant is approximately equal to x2λe−x2
.

Therefore, the integral is well behaved at the upper limit of x →∞ and we are
allowed to play all kinds of games with the integrant. If λ < 1 (remember that
λ > 0) the logarithm can be expanded in a Taylor series for all values of x and
since the integral is well behaved it is allowed to interchange summation and
integration. Using

|z| < 1 ⇒ log(1 + z) =
∞∑

n=1

1
n

zn(−1)n (5.30)

and generalizing λ to be able to take on complex values, we have

|λ| < 1 ⇒ log(1 + λe−x2
) =

∞∑
n=1

1
n

(−1)nλne−nx2
(5.31)

and since the convergence of the series is uniform we can interchange summation
and integration. This leads to

|λ| < 1 ⇒ f 5
2
(λ) =

4√
π

∞∑
n=1

1
n

(−1)nλn

∫ ∞

0

x2dxe−nx2
=

∞∑
n=1

λn

n
5
2
(−1)n+1

(5.32)
where we have used

∫ ∞

0

y2dye−ny2
=

1
4
√

π
1

n
√

n
(5.33)

This defines why we used the notation 5
2 . In general, one defines a family of

functions fα(z) by



5.1. FERMIONS IN A BOX. 97

fα(z) =
∞∑

n=1

zn

nα
(−1)n+1 , |z| < 1 (5.34)

This defines the function for a disc around the origin. The values for arbitrary
values of z are obtained by analytical continuation. For example:

f0(z) =
∞∑

n=1

zn(−1)n+1 = 1−
∞∑

n=0

zn(−1)n = 1− 1
1 + z

=
z

1 + z
(5.35)

and this defines a function everywhere, except at the pole z = −1.

Why is this important?

One might argue that now we have computers available and we do not need
all this analytical detail anymore. Since one use of power series is to be able
to evaluate functions over a reasonable domain of arguments, we can simply let
computers take over and do the integrations for all values. This is not really
correct, however. The analysis above tells us where we have poles and other
singularities. These are places where computer calculations will fail! Relying on
computers also assumes that there are no errors in the computer calculations,
and that is not always true. Therefore, we need to be able to check our computer
calculations against the analytical solutions we can obtain via power series and
other means. The analytical solutions can tell us that near a limiting point
or singularity an energy will behave like |T − T0|−0.3, for example. This is
very difficult to extract precisely from a computer calculation. But, of course,
computational physics also has its place, because it can extend the analytical
solutions to domains of the parameters where we cannot get analytical solutions.

Simple example.

As a simple example, study the differential equation

ẍ + x = 0 (5.36)

and try a power series of the form x(t) =
∑∞

0 cntn. This gives:

∞∑
0

cnn(n− 1)tn−2 +
∞∑
0

cntn = 0 (5.37)

or after combining terms with equal powers of t, and defining c−2 = c−1 = 0 we
get:

∞∑
0

(cn+2(n + 2)(n + 1) + cn)tn = 0 (5.38)
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Since this has to be identical to zero, all coefficients of all powers of t have to
be zero, and we have cn+2(n + 2)(n + 1) + cn = 0. We get two sets of solutions.
Either we set c0 = 1 and c1 = 0 or do the opposite. A general solution is a
linear combination of these two basic solutions. The basic solutions are

∞∑

k=0

(−1)k

(2k)!
t2k (5.39)

and

∞∑

k=0

(−1)k

(2k + 1)!
t2k+1 (5.40)

which clearly converge for all values of time. Do these functions have special
properties? That is very hard to tell from the power series solutions. We
know however, that they are equal to cos(t) and sin(t) and are periodic. That
information comes from a different source of knowledge. We can also solve the
differential equation on a computer and plot the solution. Most likely we will see
the periodicity right away, but round-off errors will start to change the picture,
and perhaps we can see only a certain number of periods. Therefore, can we
conclude from the computer calculations that the solutions are periodic? Who
knows.

Another example is the differential equation

d3x

dt3
+ x = 0 (5.41)

It is easy to construct power series solutions, they are of the form:

∞∑

k=0

(−1)k

(3k)!
t3k (5.42)

and similar. Are they periodic? What other properties do they have?

Finding the chemical potential.

Once we know the grand energy we are able to calculate N and find

N(T, µ, V ) = −
(

∂Ω
∂µ

)

T,V

= −
(

∂Ω
∂λ

)

T,V

(
∂λ

∂µ

)

T,V

(5.43)

N = (2S + 1)V kBTλ−3
T

(
∂

∂λ
f 5

2
(λ)

)
λ

kBT
(5.44)

The derivative for our special function is easy to find for λ < 1 using the power
series.
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d

dz

∞∑
n=1

zn

nα
(−1)n+1 =

∞∑
n=1

n
zn−1

nα
(−1)n+1 =

1
z

∞∑
n=1

zn

nα−1
(−1)n+1 (5.45)

and hence we have for |z| < 1 :

d

dz
fα(z) =

1
z
fα−1(z) (5.46)

Analytical continuation then leads to the general result that this relation is valid
everywhere in the complex plane. As a result, we find:

N(T, µ, V ) = (2S + 1)︸ ︷︷ ︸
spin

degeneracy

V︸︷︷︸
simple
volume

dependence

λ−3
T︸︷︷︸

volume
scale

f 3
2
(λ)

︸ ︷︷ ︸
density
effects

(5.47)

or, using the density and the quantum density:

n

nQ(T )
= (2S + 1)f 3

2
(λ) (5.48)

which clearly shows that the effects of the chemical potential only show up
through our special function f 3

2
(λ).

We can now use this equation to find µ(T, V,N). That follows the general
procedure we have outlined before. Can we always invert the equation? In ther-
modynamics we found that

(
∂N
∂µ

)
T,V

> 0. This allows us to find the chemical

potential as a function of N . Does our current result obey the same relation?
It should, of course, if we did not make any mistakes. We have

1
nQ(T )

(
∂n

∂µ

)

T,V

=
1

nQ(T )

(
∂n

∂λ

)

T,V

λ

kBT
=

2S + 1
kBT

f 1
2
(λ) (5.49)

Is this a positive quantity? It is better to answer this question by looking at
the integral forms. We have (using fα−1 = z d

dz fα: :

f 5
2
(λ) =

4√
π

∫ ∞

0

x2dx log(1 + λe−x2
) (5.50)

f 3
2
(λ) =

4√
π

∫ ∞

0

x2dx
λe−x2

1 + λe−x2 (5.51)

or

f 3
2
(λ) =

4√
π

∫ ∞

0

x2dx
e−x2

λ−1 + e−x2 (5.52)

The last form already makes it clear that in λ increases the denominator de-
creases and hence the integral increases. We also find from this expression:
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f 1
2
(λ) =

4√
π

1
λ

∫ ∞

0

x2dx
e−x2

(
λ−1 + e−x2

)2 (5.53)

which is clearly always positive.
If we look at equation(5.48) we see that, since the right hand side is always

increasing, there are some simple relations between λ and the temperature T .
For T = 0 the quantum density goes to zero, and hence the left hand side of
equation(5.48) goes to ∞. The right hand side has to go to infinity, too, and
this means that λ goes to infinity. If the temperature goes to infinity, the left
hand side of the equation goes to zero, which means that λ goes to zero. For
values in between, λ decreases when the temperature increases! Hence, for a
fixed value of N, we have:

lim
T→0

λ = ∞ (5.54)

lim
T→∞

λ = 0 (5.55)

(
∂λ

∂T

)

V,N

< 0 (5.56)

Low temperature expansions.

The goal is to find the chemical potential as a function of the number of
particles, at a given temperature and volume. We need to use equation (5.48)
to do that. We have seen that for a given density low temperatures correspond
to values of λ going to infinity. Therefore, we need to investigate the behavior
of the function f 3

2
for large arguments. We start with the integral form, since

we are outside the range of the series expansion:

f 3
2
(λ) =

4√
π

∫ ∞

0

x2dx
e−x2

λ−1 + e−x2 (5.57)

which is equal to

f 3
2
(λ) =

4√
π

∫ ∞

0

x2dx
1

λ−1ex2 + 1
(5.58)

Using y = x2 and defining λ = eν we get

f 3
2
(λ) =

2√
π

∫ ∞

0

1
ey−ν + 1

√
ydy (5.59)

Integration by parts gives via:

f 3
2
(λ) =

4√
3π

∫ ∞

0

1
ey−ν + 1

dy
3
2 (5.60)
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and using the fact that the integrant is zero at the endpoints of the interval:

f 3
2
(λ) = − 4√

3π

∫ ∞

0

y
3
2 d

1
ey−ν + 1

(5.61)

f 3
2
(λ) =

4√
3π

∫ ∞

0

y
3
2

ey−ν

(ey−ν + 1)2
dy (5.62)

We now define y = tν and obtain

f 3
2
(λ) =

4√
3π

ν
5
2

∫ ∞

0

t
3
2

eν(t−1)

(
eν(t−1) + 1

)2 dt (5.63)

The form above for f 3
2

is quite useful. If ν is very large (which means λ very
large), the ratio of the exponents on the right hand side is a very sharp function
centered at t = 1. For example, if t is larger than one, and ν is very large, the
exponent is very large, and the ratio of exponents behaves like eν(1−t), which is
very small. Similarly, if t is less than one, the exponent is very small and the
denominator approaches one, while the numerator now is very small.

Since the integrant is sharply peaked at one, this suggests expanding the
function t

3
2 in a Taylor series around one:

t
3
2 = (1 + [t− 1])

3
2 =

∞∑
n=0

( 3
2

n

)
(t− 1)n (5.64)

This series, however, converges only between zero and two, and hence we cannot
use it in the integral as given. However, we can split the integration interval in
three parts. The main part is [ε, 2− ε] where ε is a small positive number. The
main contribution to the integral comes from this interval. The values at the
endpoints are proportional to e−ν and hence are very small. Therefore:

f 3
2
(λ) =

4√
3π

ν
5
2

∫ 2−ε

ε

t
3
2

eν(t−1)

(
eν(t−1) + 1

)2 dt +O(λ−1) (5.65)

The notation O(z) means terms of order z. But now we can use the series
expansion in the integral, and since the series converges uniformly in the range
of integration, we can interchange integration and summation:

f 3
2
(λ) =

4√
3π

ν
5
2

∞∑
n=0

( 3
2

n

) ∫ 2−ε

ε

(t− 1)n eν(t−1)

(
eν(t−1) + 1

)2 dt +O(λ−1) (5.66)

or by changing the integration variable:

f 3
2
(λ) =

4√
3π

ν
5
2

∞∑
n=0

( 3
2

n

) ∫ 1−ε

−1+ε

un eνu

(eνu + 1)2
du +O(λ−1) (5.67)
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Next, we replace the endpoints in all integrals by ±∞, which again introduces
errors of order e−ν . This seems obvious at first, but we need to take some care
since there is a summation in n involved, which easily could give diverging fac-
tors. For large values of ν the additional terms in the integral are approximately∫∞
1−ε

une−νudu and similar for the other part. Since ε is very small, we can re-
place this by zero in this integral. We can now easily show that the integral is
proportional to e−νn!ν−n. Summing this over n, ignoring the small variation
in the binomial factor as a function of n, gives an error term proportional to
e−ν+ 1

ν . Hence we get:

f 3
2
(λ) =

4√
3π

ν
5
2

∞∑
n=0

( 3
2

n

) ∫ ∞

−∞
un eνu

(eνu + 1)2
du +O(λ−1) (5.68)

and using v = νu we finally get:

f 3
2
(λ) =

4√
3π

ν
3
2

∞∑
n=0

ν−n

( 3
2

n

) ∫ ∞

−∞
vn ev

(ev + 1)2
dv +O(λ−1) (5.69)

The power series is in terms of inverse powers of ν or log(λ), which are the
slowest terms to go to zero. For large values of λ these are the only important
terms. The ratio of exponents in the integrants is an even function of v, and
hence only even powers of n remain in the expansion, because the integrals are
zero for odd powers.

Therefore, if βµ À 1 it follows that

f 3
2
(λ) ≈ 4

3
√

π
(βµ)

3
2

(
1 +

π2

8
(βµ)−2

)
(5.70)

Hence in the limit T → 0 we only need to take the first term and we find, with
EF = µ(T = 0):

n

nQ(T )
= (2S + 1)

4
3
√

π
(βEF )

3
2 (5.71)

and using the definition of the quantum density:

n

(
2π~2

M

) 3
2

= (2S + 1)
4

3
√

π
(EF )

3
2 (5.72)

or

(
3n
√

π

4(2S + 1)

) 2
3 2π~2

M
= EF (5.73)

which takes the familiar form

EF =
(

6nπ2

2S + 1

) 2
3 ~2

2M
(5.74)
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This relates the Fermi energy to the density and this relation is very important
in the theory for the conduction electrons in a metal. In that case, of course,
S = 1

2 and the spin factor 2S + 1 is equal to two.
The correction for low temperatures is obtained by using this T = 0 result

in the expression for N together with the second term in the series expansion:

n

nQ(T )
= (2S + 1)

4
3
√

π
(βµ)

3
2 (1 +

π2

8
(βµ)−2) (5.75)

and by comparing with the T = 0 result we obtain:

(2S + 1)
4

3
√

π
(βEF )

3
2 = (2S + 1)

4
3
√

π
(βµ)

3
2 (1 +

π2

8
(βµ)−2) (5.76)

or

(
µ

EF
)−

3
2 = 1 +

π2

8
(βµ)−2 (5.77)

For low temperatures we write µ = EF + ∆µ, with ∆µ small, and we can
expand the left hand side up to first order:

−3
2

∆µ

EF
≈ π2

8
(βµ)−2 (5.78)

On the right hand side we only need the leading order term, and we can replace
µ by EF . This gives

∆µ

EF
≈ −π2

12
(kBT )2E−2

F (5.79)

or

µ(T,N, V ) ≈ EF

(
1− π2

12

(
kBT

EF

)2
)

(5.80)

What are low temperatures?

The previous equation also gives us a direct measure for the magnitude of
the temperature. For a given density n = N

V we can find the Fermi energy from
equation (5.74 ). The corrections depend on the ratio of the thermal energy and
the Fermi energy, and hence low temperature means kBT ¿ EF .

Helmholtz free energy al low temperature.

The Helmholtz free energy is obtained by integrating µ from 0 to N. Since
EF ∝ N

2
3 we can use
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∫ N

0

EF (N ′)dN ′ =
3
5
NEF (5.81)

∫ N

0

E−1
F (N ′)dN ′ = 3NE−1

F (5.82)

and get

F (T, N, V ) =
∫ N

0

µ(T, V,N ′)dN ′ ≈ 3
5
NEF

(
1− 5π2

12

(
kBT

EF

)2
)

(5.83)

Other thermodynamic variables.

The entropy follows from

S(T, N, V ) = −
(

∂F

∂T

)

V,N

≈ Nπ2

2
kBT

EF
kB (5.84)

and indeed goes to zero if the temperature goes to zero. The internal energy
follows from:

U(T, N, V ) = F + TS ≈ 3
5
NEF

(
1 +

5π2

12

(
kBT

EF

)2
)

(5.85)

At zero temperature we have U = 3
5NEF . Hence the average energy per particle

is less than the Fermi energy, as expected, since the Fermi energy is the energy
of the occupied orbital with the largest energy. The average is not half the Fermi
energy, however, since the number of states with a certain energy is increasing
with energy. There are more orbitals with an energy larger than half the Fermi
energy than there are with an energy less than half the Fermi energy.

The heat capacity at constant volume is:

CV (T, V,N) =
(

∂U

∂T

)

V,N

≈ NkB
π2

2
kBT

EF
(5.86)

First of all, we notice that the heat capacity goes to zero in a linear fashion, as is
required by the third law of thermodynamics. This was not true for the ideal gas,
and we clearly have now an improved theory that is valid for low temperature.
The ratio of the Fermi-Dirac heat capacity to the ideal heat capacity is:

CV

Cideal
V

=
π2

3
kBT

EF
¿ 1 (5.87)

which seem to indicate that only a small portion of the particles participate in
excitation processes. That is indeed true, and will be further explored in solid
state physics.
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Experiments in solid state physics are able to measure the heat capac-
ity at low temperature. From these measurements on finds a value for the
Fermi energy. The density of the electrons can also be measured, from lat-
tice spacing data. Therefore, we can compare the two parts of the equation
EF = ~2

2M (3nπ2)
2
3 . In general, we find that the left hand side is not equal to

the right hand side. The only available parameter is the mass M of the par-
ticles. Apparently, the mass has changed from the free particle mass. This is
reasonable, since there are many body interactions. In order to move one elec-
tron we need to move others out of the way, too, and hence a certain applied
force results in a smaller acceleration. In other words, the mass seems larger.
In regular solids this enhancement is a factor between 1 and 10, but in special
cases it can be 1000 or more. There are also cases where the enhancement is
actually less than one, and lattice effects help to accelerate the electron even
more than normal.

Since we also know that EF ∝ V − 2
3 we find for the pressure

p(T, V, N) = −
(

∂F

∂V

)

T,N

≈ 2
5

NEF

V

(
1 +

5π2

12

(
kBT

EF

)2
)

(5.88)

from which we obtain the Gibbs energy:

G(T, V,N) = F + pV ≈ NEF

(
1− π2

12

(
kBT

EF

)2
)

(5.89)

which shows that also here G = µN , as expected. Finally, we can also calculate
the grand energy:

Ω(T, V, N) = F − µN ≈ −2
5
NEF

(
1 +

5π2

12

(
kBT

EF

)2
)

(5.90)

which is indeed −pV as expected from the Euler equation in thermodynamics.
Now we can go back to the original form for the grand energy derived in this
section. Remember that the grand energy had a simple linear dependence on
volume? This gives:

p = −
(

∂Ω
∂V

)

T,µ

= −Ω
V

(5.91)

indeed. Therefore, the simple volume dependence in the grand energy was
required by thermodynamics!

Surprisingly, even at T = 0 the pressure of a Fermi gas is greater than zero.
This is in contrast to the ideal gas. The origin of this pressure is the Pauli
principle which makes that particles of the same spin avoid each other. For
example, in a metal we have n ≈ 1029 m−3 and the Fermi energy is a few
eV or about 10−18 J , leading to a pressure of about 105 atm! So why do the
conduction electrons stay within a metal? The answer is, of course, the large
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Coulomb attraction between the electrons and the ion cores in a solid. A similar
large pressure occurs in white dwarf stars. In that case gravity is the force that
keeps the particles together.

Large temperatures.

The other limit of interest is T → ∞. In this case we expect, of course,
to find the results for an ideal gas. Like we discussed before, since n = (2S +
1)nQ(T )f 3

2
(λ) the function f 3

2
(λ) has to approach zero and hence λ → 0. There-

fore this function is dominated by the first term in the power series and we find

N(T, µ, V ) ≈ (2S + 1)V nQ(T )λ (5.92)

Apart from the factor 2S + 1 this is the result we had before. This last factor
is a result of the additional degeneracy we introduced by including spin and
reduces the chemical potential. In this high temperature limit we find

Ω(T, µ, V ) ≈ −(2S + 1)V kBTnQ(T )λ (5.93)

Together with the formula for N this yields:

Ω(T, µ, V ) ≈ −NkBT (5.94)

and using p = −Ω
V :

p =
NkBT

V
(5.95)

Hence the ideal gas law is not influenced by the extra factor 2S+1. The pres-
sure does not change due to the spin degeneracy, unlike the chemical potential,
which is now equal to (found by inverting the equation for N):

µ(T, V, N) = kBT log(
n

(2S + 1)nQ(T )
) (5.96)

5.2 Bosons in a box.

Integral form.

The discussion in the previous chapter for bosons was again general for all
types of bosons, and in order to derive some analytical results we have again
to choose a specific model for the orbital energies. Of course we will again take
free particles in a box, using εo = ~2

2M k2 with ~k = π
L (nx, ny, nz). This leads to

Ω(T, µ, V ) = −(2S + 1)kBT
∑

nx,ny,nz

log(Znx,ny,nz (T, µ, V )) (5.97)
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with

Znx,ny,nz
(T, µ, V ) =

(
1− e

µ−ε(nx,ny,nz)
kBT

)−1

(5.98)

The same trick applies here as we used for fermions, and we replace the series
by an integral:

Ω̃(T, µ, V ) = V kBT (2S + 1)
1

(2π)3

∫
d3k log(1− e

µ− ~2k2
2M

kBT ) (5.99)

and

Ω(T, µ, V ) = Ω̃(T, µ, V ) + error(T, µ, V ) (5.100)

where the error is defined by making this equation exact. One can again show
that also for bosons we have limV→∞ error(T, µ, V ) = 0, but the big difference
with a system of fermions is that it is not possible to give an upper-bound to
the error which is only a function of V. The value of V we need in order to get
for example a 1% error becomes infinitely large when T → 0.

Note that µ < 0 for free particles, and hence 0 < λ < 1. Problems also occur
in the limit µ → 0, where the integrant diverges at the lower limit of integration.
These can be dealt with. The integral is of the form:

∫
d3k log(

1

1− λe
− ~2k2

2MkBT

) (5.101)

and when k is small the argument of the logarithm is approximately log( 2MkBT
~2k2 ).

Therefore, near the origin we need to evaluate
∫

d3k log(k), which behaves well
even though the logarithm diverges, since k2 log(k) goes to zero. Hence the
function Ω̃ is well defined for 0 < λ 6 1, or for µ 6 0, and there are no problems
in this integral with the limit µ → 0. As we will see, this limit corresponds to
the limit T → 0.

Special functions for bosons.

In a manner similar to what we found for fermions, we define a set of special
functions by

gα(z) =
∞∑

n=1

zn

nα
, |z| < 1 (5.102)

and use analytic continuation to define these functions everywhere. The formula
for Ω̃ is now manipulated in the same way we did for fermions, and we find

Ω̃(T, µ, V ) = −(2S + 1)V kBTnQ(T )g 5
2
(λ) (5.103)
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g 5
2
(λ) = − 4√

π

∫ ∞

0

x2dx log(1− λe−x2
) (5.104)

The limits of the integral cause no problems and it is possible to interchange
integration and summation after expanding the logarithm in a Taylor series.
This is allowed since we always have 0 < λ < 1. This gives:

− 4√
π

∫ ∞

0

x2dx log(1− λe−x2
) =

4√
π

∞∑
n=1

1
n

λn

∫ ∞

0

x2dxe−nx2
=

4√
π

∞∑
n=1

1
n

5
2
λn

∫ ∞

0

y2dye−y2
(5.105)

which is g 5
2

indeed.
The number of particles follows from

Ñ(T, µ, V ) = −
(

∂Ω̃
∂µ

)

T,V

= (2S + 1)V nQ(T )g 3
2
(λ) (5.106)

because we have for the special functions in this case too:

d

dz
gα(z) =

1
z
gα−1(z) (5.107)

The large temperature limit of these equations is the same as for fermions,
since the first term in the expansion for λ → 0 for fα(λ) and gα(λ) is the same,
exactly λ, for both cases. Also, the error term is small for ordinary values of
V and we recover the ideal gas laws for both fermions and bosons when the
temperature is large or the density is low. The equation for Ñ shows that if
n ¿ nQ(T ) one needs g 3

2
(λ) ¿ 1 and this only occurs when λ ¿ 1.

Low temperatures.

At very low temperatures we expect that the occupation of the ground state
will be large, and hence we need µ → min(ε). In this case we expect problems
with replacing the series by an integral. In order to discuss this further we
consider the partial sums:

ΩR(T, µ, V ) = (2S + 1)kBT

√
n2

x+n2
y+n2

z<R∑
nx,ny,nz

log(1− λe
− ~2k2

2MkBT ) (5.108)

with ~k = π
L (nx, ny, nz). We see that when R2 ~2π2

2ML2kBT > log(λ) the terms in
the series become exponentially small, and that convergence goes fast. Like
for fermions, we have uniform convergence for any interval 0 < V 6 Vm and
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0 < T 6 Tm. Also, in case T →∞ the sum approaches the integral again, and
there are no convergence problems for the series.

The next question is if the series always converges to the integral Ω̃. The
integrant in k-space is again steepest for values of k near zero, and we expect
problems in the first few terms of the series.

Simple example.

Consider the following series:

F (α) =
1√
L

∞∑
n=0

e−
n
L√

n + αL
(5.109)

Define xn = n
L and ∆x = 1

L . We have:

F (α) =
∞∑

n=0

e−xn

√
xn + α

∆x (5.110)

and in the limit L →∞ this approaches the integral:

F (α) =
∫

dx
e−x

√
x + α

(5.111)

If we now take the limit α → 0 we get a well defined result. But we did take
the thermodynamic limit L → ∞ first, and that is not correct. If we take the
limit α → 0 in the series the very first term, which is equal to 1√

αL
blows up!

We can find a way out. Write the series in the following form:

F (α) =
1

L
√

α
+

1√
L

∞∑
n=1

e−
n
L√

n + αL
(5.112)

Now we can replace the series by an integral for all values of α, since the diver-
gent term is isolated outside the series. Hence we have

L À 1 ⇒ F (α) ≈ 1
L
√

α
+

∫
dx

e−x

√
x + α

(5.113)

where the first term can be ignored only if L À 1
α ! Hence in the limit α → 0

this first term can never be ignored.

The low temperature limit for bosons.

We now return to the question of the magnitude of the error term at low
temperature. The easiest way to discuss the nature of the low temperature limit
is to consider the expansion for N in terms of orbitals:
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N(T, µ, V ) = (2S + 1)
∑

nx,ny,nz

(
e
~2
2M

( π
L

)2(n2
x+n2

y+n2
z)−µ

kBT − 1

)−1

(5.114)

The condition on µ is µ 6 ~2π2

2M V − 2
3 3. This guarantees that all terms are

positive, and hence each term is smaller than N
2S+1 . For large values of ni the

terms approach zero exponentially fast, and hence the series converges. That is
no surprise, since we know that the result is N . The convergence is uniform for
all values of T in [0, Tm] and V in [0, Vm]. This is true for all values of µ in the
range given above.

It is possible to give an upper-bound to these large terms by

(
e
~2
2M

( π
L

)2(n2
x+n2

y+n2
z)−µ

kBT − 1

)−1

< Xe
−
~2
2M

( π
L

)2(n2
x+n2

y+n2
z)−µ

kBTm (5.115)

with X of order 1 and for T < Tm if
√

n2
x + n2

y + n2
z > N(Tm). Therefore the

series converges uniformly for T 6 Tm and µ 6 0, as stated above.
We can now write

lim
T→0

N(T, µ, V ) = (2S + 1)
∑

nx,ny,nz

lim
T→0

(
e
~2
2M

( π
L

)2(n2
x+n2

y+n2
z)−µ

kBT − 1

)−1

(5.116)

For any value of µ 6 ~2π2

2M V − 2
3 3 the limit of each term is zero and hence the

limit of N is zero. If the chemical potential is specified, the system contains no
particles at zero temperature! This is the case for a system of photons, there is
no radiation at zero temperature!

In a gas of bosons, however, we often specify the number of particles < N >
and find µ from < N >= N(T, µ, V ). This tells us that µ is a function of T,V,
and < N > and that

< N >= lim
T→0

N(T, µ(T, < N >, V ), V ) (5.117)

We introduced the notation < N > to distinguish between the actual number
of particles in the system and the general function which yield the number of
particles when T,µ, and V are specified. Inserting this in the equation for the
limits gives:

N = (2S + 1)
∑

nx,ny,nz

lim
T→0

(
e
~2
2M

( π
L

)2(n2
x+n2

y+n2
z)−µ(T,N,V )

kBT − 1

)−1

(5.118)
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where we wrote N again for the number of particles, since the function N did not
appear anymore. Because the series converges in a uniform manner, we could
interchange the summation and the limit T → 0. For all terms beyond the first
we have

~2

2M
(
π

L
)2(n2

x + n2
y + n2

z)− µ > ~2

2M
(
π

L
)2(n2

x + n2
y + n2

z − 3) > 0 (5.119)

and hence in the limit T → 0 the exponent goes to infinity and the term goes
to zero. As a consequence, we must have

N = (2S + 1) lim
T→0

(
e
~2
2M

( π
L

)23−µ(T,N,V )
kBT − 1

)−1

(5.120)

or

lim
T→0

~2
2M ( π

L )23− µ(T,N, V )
kBT

= log(1 +
2S + 1

N
) (5.121)

Hence we find the low temperature expansion for the chemical potential and
for the absolute activity:

µ(T, N, V ) ≈ ~2

2M
(
π

L
)23− kBT log(

N + 2S + 1
N

) +O(T 2) (5.122)

What is a low temperature?

In the treatment above we call the temperature low if the first term is dom-
inant, or if (comparing the first and the second term):

~2

2M
(
π

L
)26− µ À kBT (5.123)

which is the case (using the limit for µ) if

~2

2M
(
π

L
)23 À kBT (5.124)

For L = 1 m and He atoms this gives kBT ¿ 4× 10−41 J , or T ¿ 4× 10−18 K,
which is a very low temperature.

But this is not the right answer! We asked the question when are all particles
in the ground state. A more important question is when is the number of
particles in the ground state comparable to N, say one percent of N. Now we
will get a much larger value for the temperature, as we will see a bit later.

Limits cannot be interchanged.
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From the formula for the chemical potential we obtain:

λ(T, N, V ) ≈ N

N + 2S + 1
e

~2
2MkBT ( π

L )23 (5.125)

The last formula shows that limits cannot be interchanged without penalties:

lim
T→0

λ(T,N, V ) = ∞ (5.126)

lim
V→∞

λ(T, N, V ) =
N

N + 2S + 1
→ 1 (5.127)

and hence

lim
T→0

lim
V→∞

λ(T, N, V ) 6= lim
V→∞

lim
T→0

λ(T,N, V ) (5.128)

But we need to be careful. Since we required that ~2
2M ( π

L )23 À kBT we cannot
take the limit V →∞ first without violating this condition!

Grand energy at low temperatures.

Since we know that the first term in the series for N, and hence in the series
for Ω, can be the dominant term and be almost equal to the total sum, we now
isolate that term. We could improve on this procedure by isolating more terms,
but that will not change the qualitative picture. Hence we write

Ω(T, µ, V )
V

=
(2S + 1)kBT

V
log

(
1− λe

− ε(1,1,1)
kBT

)
+

(2S + 1)kBT

V

′∑
nx,ny,nz

log(Znx,ny,nz (T, µ, V )) (5.129)

Now we replace the second term by the integral as before. The lower limit is
not strictly zero, but if V is large enough we can replace it by zero. Hence we
find

Ω(T, µ, V )
V

=
(2S + 1)kBT

V
log

(
1− λe

− 3~2π2

2MkBT L2

)
−

(2S + 1)kBTnQ(T )g 5
2
(λ) + error(T, µ, V ) (5.130)

where the error term is due to replacing the sum by the integral. If the tem-
perature is large and the volume is large, the limit of the first term in Ω is
zero, the second term dominates, and the error is small compared to the second
term. If the temperature is very small, and the volume is large but finite, the
error term is large compared to the second term, but small compared to the first
term! The error is largest in the transition region between these two cases, and
a description could be improved by adding more terms. In the thermodynamic
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limit, however, the contribution of these terms will go to zero! For finite vol-
umes these terms can give some contributions, leading to rounding off of sharp
curves near the phase transition.

By splitting the range in these two parts, we can show that on each part the
convergence is uniform. Hence we have

V > Vε ⇒
∣∣∣∣∣
error(T, µ, V )

Ω
V

∣∣∣∣∣ < ε (5.131)

with Vε independent of T and µ. Therefore, in all cases the error term is small
compared with the value of Ω, assuming a large volume. A value of 1 m3 for
the volume certainly satisfies the criteria of being large. Hence for all practical
applications we can ignore the error term. Keep in mind, though, that if you
do experiments on a small container of helium gas with only 1000 atoms at
normal pressure and temperature, you will find deviations from this formula.
To analyze such experiments you really have to calculate the sum of the series.

5.3 Bose-Einstein condensation.

The expression for the density N
V is

n =
2S + 1

V
fBE(ε111) +

2S + 1
λ3

T

g 3
2
(λ) (5.132)

We now take the thermodynamic limit of this expression. For large values of
the volume we may replace ε111 by zero. This gives us

n =
2S + 1

V

λ

1− λ
+ (2S + 1)nQ(T )g 3

2
(λ) (5.133)

It is easy to show that g 3
2
(λ) is a monotonically increasing function of λ, since

the derivative is proportional to g 1
2

which is always positive for 0 6 λ 6 1. As
a result, the particle density is an monotonically increasing function of λ. We
define G = g 3

2
(1) = 2.612 · · ·.

It is possible to distinguish two regimes. If

n

nQ(T )
< (2S + 1)G (5.134)

it is possible to find a value of λ < 1 satisfying n = (2S +1)nQ(T )g 3
2
(λ) . In the

expression for n we therefore are able to take the thermodynamic limit V →∞,
and the first term in equation (5.133) is zero. This means that in the density
regime n < nQ(T ) the ground state orbital does not play an important role,
and the gas behaves like a normal gas.

On the other hand, if

n

nQ(T )
> (2S + 1)G (5.135)
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this is impossible! For such a combination of density and temperature we need
the first term in equation (5.133). For large values of the volume , the value of
λ will be close to one, and the value of the second term in equation (5.133) can
be replaced by (2S + 1)G. In the thermodynamic limit we have

lim
V→∞

2S + 1
V

λ

1− λ
= n− (2S + 1)nQ(T )G (5.136)

or

λ = 1− 2S + 1
V (n− (2S + 1)nQ(T )G)

(5.137)

Since in most experiments the temperature is varied and not the density, it
is customary to define a critical temperature TE , the Einstein temperature, by
n = nQ(TE)(2S + 1)G, or

TE =
(

2π~2

MkB

)(
n

(2S + 1)G

) 2
3

(5.138)

The Einstein temperature for Helium is about 3K. The first term in the formula
for n, equation (5.133), gives the number of particles in the orbital with the
lowest energy. If the temperature is higher than the Einstein temperature,
there are essentially no particles in this orbital. If the temperature is below the
Einstein temperature, the number of particles in this orbital becomes very large.
More precisely, the Einstein temperature is the dividing point between having
or not having a macroscopically large number of particles in the ground state
orbital. In the thermodynamic limit this is the only orbital with a macroscopic
number of particles, but for finite volumes other orbitals can be important, too.
As we have shown before, for a volume of 1 m3 we need a temperature less than
10−18 K for all particles to be in the ground state.

The relative number of particles in the ground state orbital, (2S+1)fBE(ε111)/N ,
for a temperature below the Einstein temperature follows from

(2S + 1)
fBE(ε111)

V
= n− (2S + 1)λ−3

T G (5.139)

and since the thermal wavelength is proportional to T− 1
2 we can write this as

the fraction of particles in the ground state orbital:

(2S + 1)
fBE(ε111)

N
= 1−

(
T

TE

) 3
2

(5.140)

This fraction is zero for T > TE . At T = 0, all particles are in the ground state
orbital.

Note that there is some confusion in defining an orbital. If we define an
orbital by the quantum numbers nx, ny, nz only, the total number of particles
in that orbital is given by (2S + 1)fBE(ε(nx, ny, nz)). If we define an orbital by
the quantum numbers n plus a quantum number s for spin, the total number
of particles in that orbital is fBE(ε(nx, ny, nz, s)). But now we have 2S + 1
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degenerate orbitals! Hence at T = 0 the number of particles in a ground state
orbital (1, 1, 1, s) is N

2S+1 and the total number of particles in all ground state
orbitals (1, 1, 1, s) together is N. In other words, all particles are in the ground
state orbital (1, 1, 1) defined without spin. In a number of books one changes
the actual definition of the distribution function by

fBE(ε) =
2S + 1

e
ε−µ
kBT − 1

(5.141)

and similar for fermions. Keep this in mind.
The number of particles in the ground state orbital(s) has a sharp transition

according to our formulas. This is because we took the thermodynamic limit.
If we keep both terms in the expression for n, however, this transition is smooth
for finite volumes. Even for values above the Einstein temperature there are
some particles in the ground state orbital. For most experimental situations,
however, the differences are small and one is allowed to use the 3

2 power law
formula. Only right at the transition does one see finite size effects. The process
in which a macroscopic number of particles go into the ground state orbital
is called Bose-Einstein condensation. It is observed experimentally in liquid
Helium. Below 2.17 K liquid Helium has no viscosity and a very large thermal
conductivity. One can think of these effects as a manifestation of a macroscopic
quantum state. Since many particles are in the same orbital, there are no
interference effects between their wave functions and they all act in a coherent
way.

Note, however, that our calculations are performed for a gas. In a real
experiment the temperature is very low and the material is a liquid. Corrections
due to particle interactions are needed and the actual calculations are much more
difficult. Also, our calculations only show that there is a transition. In order
to describe the state with Bose-Einstein condensation we need to take particle
interactions into account! Again, these correlation effects are very difficult to
incorporate.

5.4 Problems for chapter 5

Problem 1.

An ideal gas consists of H2 molecules. We need six degrees of freedom to
describe such a molecule. Three pertain to the motion of the center of mass
of the molecule and these degrees of freedom follow the statistical mechanical
description of an ideal gas. There are three internal degrees of freedom, two
pertaining to rotations and one to vibrations of each molecule. The values for
the energy levels of the rotational degrees of freedom are kBTrj(j + 1) and for
the vibrational states kBTv(n + 1

2 ). Quantum effects start to play a role below
a temperature Tq, defined by nQ(Tq) = n. The H2 gas in enclosed in a fixed
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volume of 22,4 liters and the number of molecules in this volume is one mole.
Assume that Tr ≈ 175 K and Tv ≈ 6, 500 K.

A() Calculate Tq

(B) Calculate an approximate value for Cv at T = 50 K

(C) Calculate an approximate value for Cv at T = 4, 000 K

(D) Calculate an approximate value for Cv at T = 50, 000 K

Problem 2.

Using the expansion

f 3
2
(z) =

4
3
√

π

(
(log z)

3
2 +

π2

8
(log z)−

1
2 +

7π4

640
(log z)−

5
2 · · ·

)

for large values of z, calculate the low temperature behavior of µ(T ), U(T ),
S(T ), and p(T ) up to fourth order in T.

Problem 3.

At high temperatures we have λ → 0 for both bosons and fermions. Use
the formula for N

V and expand f 3
2

and g 3
2

up to second order. Note that n
nQ

is
small!

(A) Find the correction term to µ(T ) due to the second term in that expansion
for bosons and fermions.

(B) Calculate the pressure including this second term for bosons and fermions.

Problem 4.

Pauli Paramagnetism.
The energy of non-relativistic electrons in a small magnetic field is given

by ε~p,s = p2

2m − sµ0B where s = ±1 and µ0 is the magnetic moment of the
electron. Assume µ0B ¿ εF . Note that in this problem we ignore the effect
of the magnetic field on the orbit of the electron, that turns out to be OK in
first approximation. Evaluate the magnetic susceptibility χ in the following four
cases:

(A) For T = 0.

(B) For kBT ¿ εF , one more term beyond (A).
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(C) For T = ∞. (Note: this one you can get without any detailed calculation).

(D) For kBT À εF , one more term beyond (C).

Problem 5.

The virial expansion is given by p
kT =

∑∞
j=1 Bj(T )

(
N
V

)j
with B1(T ) = 1.

Find B2(T ) for non-interacting Fermions in a box.

Problem 6.

The energy of relativistic electrons is given by ε~p,s =
√

p2c2 + m2c4, which
is independent of the spin s. These particles are contained in a cubical box,
sides of length L, volume V .

(1) Calculate the Fermi energy εF = µ(T = 0) as a function of N and V .

(2) Calculate the internal energy U .

(3) Expand the integral in (2) in a power series, assuming that the density N
V

is very low.

(4) Expand the integral in (2) in a power series, assuming that the density N
V

is very high.

Problem 7.

Landau diamagnetism. The orbits of an electron in a magnetic field are also
quantized. The energy levels of the electron are now given by

ε(pz, j, α, s) =
p2

z

2m
+

e~B
mc

(j +
1
2
)

with pz = 2π
L ~l, l = 0,±1,±2, · · ·, and j = 0, 1, · · · . The quantum number

α counts the degeneracy and α runs from 1 to g = eBL2

2π~c . The magnetic field
is along the z direction. We have ignored the energy of interaction between the
spin and the magnetic field.

(1) Give an expression for the grand partition function ζ(T, µ, V ).

(2) Calculate the magnetic susceptibility for T → ∞ ( no, zero is not an
acceptable answer, one more term, please) in a weak magnetic field.
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Chapter 6

Density matrix formalism.

6.1 Density operators.

Different ways to look at statistical mechanics.

The theory of statistical mechanics is easily formulated in a quantum me-
chanical frame-work. This is not the only possibility, however. All original
developments were, of course, in terms of classical mechanics. Different ques-
tions arise and we will address some of those questions in the next chapter. But
even in quantum mechanics there are different ways to obtain information about
a system. Using the time-independent Schrödinger equation, like we did, is one
way. We can also use matrices, like Heisenberg, or more general, operators.

In statistical mechanics we start with a definition of the entropy. A different
formulation of statistical mechanics, as given in this chapter, essentially is based
on a different definition of the entropy. Our task is to show that the resulting
theories are equivalent. In order to make efficient use of the definition of entropy
introduced in this chapter we have to introduce density matrices.

Density matrices are an efficient tool facilitating the formulation of statistical
mechanics. A quantum mechanical description of a system requires you to solve
for the wave-functions of that system. Pure states are represented by a single
wave function, but an arbitrary state could also contain a mixture of wave
functions. This is true in statistical mechanics, where each quantum state is
possible, and the probability is given by the Boltzmann factor. Density matrices
are designed to describe these cases.

Suppose we have solved the eigenvalue system

H |n〉 = En |n〉 (6.1)

with normalization 〈n′| n〉 = δn′n and closure
∑

n |n〉 〈n| = 1. If the probability
for the system of being in state |n〉 is pn, the expectation value of an arbitrary
operator A is given by

119
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< A >=
∑

n

pn 〈n|A |n〉 (6.2)

The values of pn are all we know about the state of our system, and they
give a complete description of this state. In this case the description of the
system is an ensemble, which is a more general way to describe a system than
using pure states only. Of course we need pn > 0 and

∑
n pn = 1. A pure state

corresponds to pm = 1 for a particular value of m. We now define the operator
ρ by

ρ =
∑

n

pn |n〉 〈n| (6.3)

This operator is called a density operator, and the matrix of its elements in a
given representation is called a density matrix. The terms operator and matrix
are frequently used for both, however. The operator ρ obeys the following
relations:

Tr ρ =
∑

n

〈n| ρ |n〉 =
∑

n

pn = 1 (6.4)

ρ = ρ† (6.5)

ρ2 6 ρ (6.6)

The last equation has to be interpreted in the following manner: we have
〈x| ρ2 |x〉 6 〈x| ρ |x〉 for all states |x〉. A consequence of this equation is that
ρ is non-negative, 〈x| ρ |x〉 > 0 for all states |x〉. A Hermitian operator is de-
fined by 〈x| ρ† |y〉 = (〈y| ρ |x〉)∗ for all states |x〉 and |y〉. The equations (6.4)
through (6.6) can also be used as a definition of a density operator. Any oper-
ator obeying these requirements is a density operator of the form (6.3) and the
probabilities pn are the eigenvalues of the density operator.

If we know the density matrix for a system, we know everything about this
system. This is due to the fact that we can only measure expectation values of
observable quantities, and these expectation values are obtained from a density
matrix by

< A >=
∑

n

〈n| pnA |n〉 = Tr (ρA) (6.7)

where we have used the fact that ρ |n〉 = pn |n〉 for the basis set of eigenstates
of the density operator. A big advantage of this formulation is that it is basis
independent. For example, the trace of a matrix is independent of the choice
of basis states. The density matrix can be specified in any basis, or in operator
form.

In statistical mechanics the probabilities pn are equal to the Boltzmann
factor, and we have
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pn =
1
Z e

− En
kBT (6.8)

The partition function is

Z =
∑

n

e
− En

kBT =
∑

n

〈n| e− En
kBT |n〉 (6.9)

Now we use the fact that the states in the sum are eigenstates of the Hamil-
tonian, and we obtain

Z =
∑

n

〈n| e− H
kBT |n〉 = Tr e

− H
kBT (6.10)

At this point we will switch to the more common notation for the inverse
temperature, β = 1

kBT . The density operator is given by

ρ =
1
Z

∑
n

e−βEn |n〉 〈n| (6.11)

and using the fact again that we expand in eigenstates of the Hamiltonian:

ρ =
1
Z e−βH (6.12)

These definitions are basis-dependent. The only question is how to define the
exponent of an operator, but that turns out to be easy since the power series
for exponents always converge uniformly on any finite interval. Hence the ex-
ponent of an operator O is defined by eO =

∑∞
n=0

1
n!O

n. The mathematical
filed of functional analysis, very useful for physicists, gives many more details.
Products of operators are well defined. Therefore, the density operator can be
specified without knowing the eigenstates of the Hamiltonian. This is definitely
an advantage. Note, however, that in many cases the most practical manner
to do calculations is by using eigenvalues. But there are certainly other cases
where it is better not to do so. Finally, the expectation value of an operator A
in this formalism is

< A >= Tr (ρA) =
Tr (e−βHA)
Tr (e−βH)

(6.13)

This is an important form for expectation values. It can be used in diagrammatic
techniques in the same manner as Feynman diagrams. The only substitution
we need to make is β → ıt. We replace inverse temperature by imaginary time.
Now what does that mean???

Formulas (6.10) and (6.12) contain functions of operators. Elementary func-
tions of an operator are positive integral powers of an operator. For example,
O2 |x〉 = O |y〉 with |y〉 = O |x〉. Sums and differences of operators are also
easily defined. More complicated functions of operators can be defined through
power series, just like functions of a complex variable in complex analysis. These
power series often have a certain radius of convergence, and expressed in terms
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of operators are only valid if the norm of the operator is less than this radius of
convergence. But often these functions can be continued for arbitrary operators
similar to the analytic continuation procedure in complex analysis. For example,
eO is defined via a power series for all operators O. If we can solve the operator
equation O = eX for the operator X, then we have defined X = log(O). The
logarithm of an operator can be expressed in the form of a power series for
log(1 + O) only if the norm of O is less than one. But log(1 + O) is defined for
all operators O for which O = eX can be solved; this is a much larger class of
operators.

If an operator O is Hermitian, O = O†, the definition of functions of op-
erators can be related to standard functions of real variables. A Hermitian
operator has a complete set of eigenfunctions |n〉 with corresponding eigenval-
ues λn. If f(x) is a well-defined function a real variable x in a certain range,
the definition of f can be extended to operators by O =

∑
λn |n〉 〈n| ⇒ f(O) =∑

f(λn) |n〉 〈n|. For example, the logarithm of a Hermitian operator can be
defined this way only if none of the eigenvalues of the operator is zero! In other
words, O = eX with O Hermitian can only be solved if none of the eigenvalues
of O is zero.

This treatment allows us to check what happens for an operator with ρ2 6 ρ.
Suppose we have

ρ |n〉 = rn |n〉 (6.14)

This gives

〈n| ρ2 |n〉 6 〈n| ρ |n〉 ⇒ r2
n 6 rn (6.15)

which means that rn is not negative and at most equal to one, 0 6 rn 6 1.
Hence for an arbitrary vector:

〈x| ρ2 |x〉 =
∑

n

〈x| ρ |n〉 〈n| ρ |x〉 =
∑

n

〈x| rn |n〉 〈n| rn |x〉 =
∑

n

r2
n| 〈n |x〉 |2

(6.16)
Similarly:

〈x| ρ |x〉 =
∑

n

〈x| ρ |n〉 〈n |x〉 =
∑

n

〈x| rn |n〉 〈n |x〉 =
∑

n

rn| 〈n |x〉 |2 (6.17)

and since r2
n 6 rn we have

∑
n

r2
n| 〈n |x〉 |2 6

∑
n

rn| 〈n |x〉 |2 (6.18)

or 〈x| ρ2 |x〉 6 〈x| ρ |x〉 for all possible vectors. Hence the definition for ρ2 6 ρ
is a valid one. Once we define this condition on all eigenstates, it is valid
everywhere. This is another example showing that it is sufficient to define
properties on eigenstates only.
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We can now make the following statement. In general, an arbitrary system is
described by a density operator ρ, which is any operator satisfying the conditions
(6.4) through (6.6). We also use the term density matrix, but this is basis
dependent. If we have an arbitrary basis |n〉, the density matrix R corresponding
to ρ in that basis is defined by Rij = 〈i| ρ |j〉. In statistical mechanics we
make a particular choice for the density matrix. For example, a system at a
temperature T and volume V , number of particles N has the density operator
given by (6.12). The extensive state variables N and V are used in the definition
of the Hamiltonian.

6.2 General ensembles.

The partition function is related to the Helmholtz free energy by Z = e−βF .
The states |n〉 in the definitions above all have N particles, and the density
operator ρ is defined in the Hilbert space of N-particle states, with volume V. It
is also possible to calculate the grand potential Ω in a similar way. The number
operator N gives the number of particles of state |n〉 via N |n〉 = Nn |n〉. The
energy of this state follows from H |n〉 = En |n〉.

In this space we still have orthogonality and completeness of the basis. The
only difference with the example in the previous section is that our Hilbert space
is much larger. We now include all states with arbitrary numbers of particles
(even zero!!), but still with volume V. Mathematically these spaces are related
by SV =

∏
N SV,N .

The grand partition function Z is defined by

Z =
∑

n

e−β(En−µNn) (6.19)

where we sum over states |n〉 with arbitrary numbers of particles. This is often
desirable in field-theory, where the number of particles is not fixed and the
operators are specified in terms of creation and annihilation operators on this
larger space, called Fock-space. The grand partition function is a trace over all
states in this general Fock-space:

Z = Tr e−β(H−µN) = e−βΩ (6.20)

and the density matrix in this case is 1
Ze−β(H−µN). The operator H−µN is some-

times called the grand Hamiltonian. In this derivation we have used the fact
that we can define energy eigenstates for specific particle numbers, or [H,N] = 0.
That condition is not necessary, however. We can use the partition function in
the form (6.20) even if the Hamiltonian does not commute with the particle
number operator, like in the theory of superconductivity. The density opera-
tor is used to calculate probabilities. The probability of finding a system with
temperature T , chemical potential µ, and volume V in a state |x〉 is given by
〈x| 1

Ze−β(H−µN) |x〉.
It is also possible to use other Legendre transformations. If V is the volume

operator, one can show that
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Tr e−β(H+pV) = e−βG (6.21)

where G is the Gibbs free energy G = U − TS + pV . The trace is a sum
over quantum states with arbitrary volumes. This is not necessarily a useful
extension, though. Quantum states are often easier to describe at constant
volume.

In summary, we have

Z(T, V, N) = Tr︸︷︷︸
SV,N

e−βH (6.22)

where the trace is in the space of all quantum states with volume V and number
of particles N. Similarly, we have

Z(T, µ, N) = Tr︸︷︷︸
SV

e−β(H−µN) (6.23)

where the trace is now in the much larger Hilbert space of states with volume V.
States do not have to have well defined particle numbers! Independent whether
the Hamiltonian commutes with the particle number operator we can always
write

Z(T, µ, N) =
∑

N

Tr︸︷︷︸
SV,N

e−β(H−µN) (6.24)

or

Z(T, µ, N) =
∑

N

eβµN Tr︸︷︷︸
SV,N

e−βH =
∑

N

eβµNZ(T, V, N) (6.25)

as before. This can also be extended. Suppose we can measure the magnetic
moment of a system. This magnetic moment M will be an integer times a basic
unit for finite particle numbers. Hence we have

Z(T, V, N, M) = Tr︸︷︷︸
SV,N,M

e−βH (6.26)

where the summation is over a smaller space with a specified value of the mag-
netic moment. If we do calculations as a function of magnetic field we have:

Z̃(T, V,N, h) = Tr︸︷︷︸
SV,N

e−β(H−hM) (6.27)

We find again:

Z̃(T, V,N, h) =
∑

M

eβhMZ(T, V, N, M) (6.28)
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6.3 Maximum entropy principle.

In Chapter 1 we defined the entropy in terms of the number of states available
to a system at constant energy, volume, etc. In Chapter 2 we derived a formula
relating the entropy and the probabilities of finding the system in a certain
state. One can also turn it around, and use this formula as a definition of the
entropy:

S = −kBTr ρ log(ρ) (6.29)

It is easy to see that this is the same. If the eigenvalues of ρ are pn we have

S = −kB

∑
n

〈n| ρ log(ρ) |n〉 = −kB

∑
n

pn log(pn) (6.30)

where we have used log(ρ) |n〉 = log(pn) |n〉. Hence in all cases where we have
the eigenstates of the Hamiltonian we get the same answer for the entropy.
But equation (6.29) is more general and can be used in all cases where we
have no good description of the states of a system in terms of eigenstates of
a Hamiltonian. It is a more general foundation of statistical mechanics, and
one might argue a better foundation. In all cases we have studied so far both
approaches give the same results.

The definition (6.29) is called the information-theoretical definition of the
entropy. It has a very useful application for finding the density operator cor-
responding to a thermodynamical system in a given state. Suppose a system
is specified by the values of some state variables. It is then often possible to
construct a general form of the density matrix ρ consistent with these state
variables. This form will contain other free parameters, though. These free
parameters are determined by maximizing the entropy! Therefore, one is
able to construct the density matrix of a system in a variational way. Once the
density matrix is known, all other quantities of interest can be found by simply
evaluating expectation values.

Suppose we have a system where we only have states with a given energy,
number of particles, and volume. These extensive parameters are sued to define
the Hilbert space of possible states of the system, and we maximize the entropy
in that space. But suppose we cannot exactly specify one of these variables.
For example, the number of particles can vary. In that case we must maximize
the entropy in a much larger Hilbert space, containing states with all possible
number of particles. But even then we can still measure the average number of
particles. So we want to find the entropy for a given value of the average number
of particles. This leads to the use of Lagrange multipliers. In thermodynamics
we have made the connection with chemical potentials, and hence we expect
that the Lagrange multiplier in this case is related to the chemical potential.

As a first example, we discuss the microcanonical ensemble. Suppose the
thermodynamical state of the system is given by exact values of the internal
energy U, the volume V, and the number of particles N. There are no variations
of these values. The last two conditions constrain the Hilbert space on which ρ
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is defined. We restrict the quantum mechanical wave functions to states with
a definite volume V and number of particles N. The energy restriction tells us
that we only want to consider states with 〈x|H |x〉 = U . The Hilbert space of
all possible states |x〉 obeying these conditions is SU,V,N .

The problem of the microcanonical ensemble is therefore to maximize the
entropy (6.29) in this space. hence we want to find the maximal value of the
entropy for all operators ρ obeying the conditions (6.4) through (6.6). Limit-
ing our search to Hermitian operators only is easy. The condition (6.6) is an
inequality and very hard to incorporate in general during the search. There-
fore, this condition we will always have to test at the end. We find all possible
maxima of the entropy, and throw away those that correspond to an operator
not obeying (6.6). Finally, the equality condition (6.4) is incorporated via a
Lagrange multiplier.

The task is now to find the maximum of

X(ρ) = −kBTr ρ log(ρ) + λkB(Tr ρ− 1) (6.31)

over all Hermitian operators on the space SU,V,N . It turns out to be convenient
to extract a factor kB from the Lagrange multiplier. Based on this euqation,
we need some functional derivative equation of the form δX

δρ = 0, but now using
operators. How do we define that? Suppose we change the operator by a small
amount, keeping it Hermitian. The we define

∆X = X(ρ + ∆ρ)−X(ρ) (6.32)

just as we did for functional derivatives. In order to connect with what we did
before, assume that we have some basis in the space on which the operators are
acting. Define the density matrix by

Rij = 〈i| ρ |j〉 (6.33)

and the variation by

∆Rij = 〈i|∆ρ |j〉 (6.34)

In first order we can then write

∆X =
∑

i,j

Aji∆Rij (6.35)

and now we define the operator δX
δρ by its matrix elements:

〈j| δX
δρ

|i〉 = Aji (6.36)

This leads to

∆X =
∑

i,j

〈j| δX
δρ

|i〉 〈i|∆ρ |j〉 = Tr (
δX

δρ
∆ρ) (6.37)
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and at an extremum this should be zero for all variations ∆ρ, which gives us
the condition mentioned before. The changes in the quantity X are related to
changes in the operator ρ, and ultimately to changes in the density matrix Rij .
Suppose we only change one matrix element, hence only ∆Rmn is non-zero for
a specific value of m and n. This gives:

∆X = 〈n| δX
δρ

|m〉 〈m|∆ρ |n〉 (6.38)

but we also have in terms of simple partial derivatives

∆X =
(

∂X

∂Rmn

)
〈m|∆ρ |n〉 (6.39)

which leads to

〈n| δX
δρ

|m〉 =
(

∂X

∂Rmn

)
(6.40)

where we note that the order in which n and m appear is interchanged left and
right.

In our particular case we have

X = −kB

∑

ij

〈i| ρ |j〉 〈j| log(ρ) |i〉+ λkB(
∑

i

〈i| ρ |i〉 − 1) (6.41)

and hence

(
∂X

∂Rnm

)
= −kB 〈m| log(ρ) |n〉+ λkBδnm − kB

∑

ij

〈i| ρ |j〉
(

∂ 〈j| log(ρ) |i〉
∂Rnm

)

(6.42)
It is the last term that causes problems in the calculations. This task can

be reformulated as follows. Suppose the operator ρ depends on some complex
variable x. Calculate Tr ρ

(
∂ρ
∂x

)
. This can be done by using the definition of a

logarithm. We have

log(ρ) = τ ⇐ eτ = ρ (6.43)

We can relate derivatives of ρ to derivatives of τ . In general we have

∂

∂x
eτ(x) =

∂

∂x

∑
n

1
n!

τn(x) (6.44)

and since the series converges uniformly, this gives

∂

∂x
eτ(x) =

∑
n

1
n!

∂

∂x
τn(x) (6.45)



128 CHAPTER 6. DENSITY MATRIX FORMALISM.

At this point we encounter an important difference between functions and
operators. We cannot interchange the order of operators if they do not commute,
and hence we have to write something of the form

(
A2

)′ = A′A+AA′! In general,
an operator and its derivative do not commute. Therefore:

∂

∂x
τn(x) =

n∑
m=1

τm−1(x)
(

∂τ

∂x

)
τn−m(x) (6.46)

and

∂

∂x
eτ(x) =

∑
n

1
n!

n∑
m=1

τm−1(x)
(

∂τ

∂x

)
τn−m(x) (6.47)

and we cannot say much more. But, in our example we need to take the trace
of this equation, and we can use Tr (ABC) = Tr (CAB). Therefore:

Tr (
∂

∂x
eτ(x)) =

∑
n

1
n!

n∑
m=1

Tr (τm−1(x)
(

∂τ

∂x

)
τn−m(x)) (6.48)

Tr (
∂

∂x
eτ(x)) =

∑
n

1
n!

n∑
m=1

Tr (τn−1(x)
(

∂τ

∂x

)
) (6.49)

Tr (
∂

∂x
eτ(x)) =

∑
n

1
n!

nTr (τn−1(x)
(

∂τ

∂x

)
) (6.50)

Tr (
∂

∂x
eτ(x)) = Tr (

∑
n

1
(n− 1)!

τn−1(x)
(

∂τ

∂x

)
) (6.51)

which finally leads to

Tr (
∂

∂x
eτ(x)) = Tr (eτ(x)

(
∂τ

∂x

)
) (6.52)

or in other words

Tr (
∂ρ

∂x
) = Tr (ρ

(
∂ log(ρ)

∂x

)
) (6.53)

and using x = Rnm:

Tr (ρ
(

∂ log(ρ)
∂Rnm

)
) = Tr (

∂ρ

∂Rnm
) = (

∂Tr ρ

∂Rnm
) = δnm (6.54)

Our final result for the partial derivative is therefore
(

∂X

∂Rnm

)
= −kB 〈m| log(ρ) |n〉+ (λ− 1)kBδnm (6.55)

and setting this equal to zero gives
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kB 〈m| log(ρ) |n〉 = (λ− 1)kBδnm (6.56)

which leads to the simple solutions

ρ = eλ−1E (6.57)

We still need to check that this is a Hermitian matrix with eigenvalues less
than one. That is easy, we simply choose λ to be real and at most one.

How do we find the value of λ? By checking the condition Tr ρ = 1. This
gives

e1−λ = Tr E (6.58)

and the last trace is simply the dimension of the space, or the number of states
with the given energy, the multiplicity function:

e1−λ = g(U, V, N) (6.59)

Since the multiplicity function is one or larger, λ is one or less. The entropy for
this density matrix is

S = −kBTr eλ−1(λ− 1)E = −kBg−1(U, V, N) log(g−1(U, V, N))Tr E (6.60)

or

S = kB log(g(U, V, N)) (6.61)

which is exactly what we expect! Hence we retrieved our old definition, and the
new procedure is the same as the old one.

The extremum of X we have found is a maximum. In order to test this, we
have to calculate the second order derivatives. Hence we need

(
∂2X

∂ρij∂ρnm

)
= −kB

∂

∂ρij
(log(ρ))mn (6.62)

In order to find the answer, we use again ρ(x) = eτ(x). As before, we have

∂

∂x
eτ(x) =

∞∑
n=1

1
n!

n−1∑
m=0

τm(x)
(

∂τ

∂x

)
τn−m−1(x) (6.63)

In general, as we noted before, this cannot be simplified. Taking the trace
of this expression allows us to make it easier. But here we need all values. But
we only need to calculate the second order derivative at the extremum. Hence
we set ρ = eλ−1E, or τ = (λ− 1)E, and we have

∂

∂x
eτ(x) =

∞∑
n=1

1
n!

n−1∑
m=0

(λ− 1)m(x)
(

∂τ

∂x

)
(λ− 1)n−m−1(x) (6.64)
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Now we can interchange factors and we find at the extremum that

∂

∂x
eτ(x) =

∞∑
n=1

1
(n− 1)!

(λ− 1)n−1

(
∂τ

∂x

)
= eλ−1

(
∂τ

∂x

)
(6.65)

or
(

∂ρ

∂x

)
= ρ

(
∂ log(ρ)

∂x

)
(6.66)

Using x = ρij we get at the extremum
(

∂ρ

∂ρij

)
= ρ

(
∂ log(ρ)

∂ρij

)
(6.67)

and we can now take the element nm of this operator equation to get
(

∂ρmn

∂ρij

)
= ρ

(
∂ log(ρmn)

∂ρij

)
(6.68)

The left side is easy, and equal to δmiδnj . Hence at the extremum we have
(

∂2X

∂ρij∂ρnm

)
= −kBe1−λδmiδnj (6.69)

Suppose we make an arbitrary small change in the density matrix around
the extremum. In second order we have

∆X =
∑

ijmn

(
∂2X

∂ρij∂ρnm

)
∆ρij∆ρnm = −kBe1−λ

∑

ijmn

δmiδnj∆ρij∆ρnm (6.70)

or

∆X = −kBe1−λ
∑

ij

∆ρij∆ρji (6.71)

Now we use the fact that the density matrix has to remain Hermitian, and hence
∆ρ∗ij = ∆ρji to get

∆X = −kBe1−λ
∑

ij

|∆ρij |2 (6.72)

which shows that the extremum is a maximum, indeed.

Why bother?

The whole approach sketched above seems very complicated, and for the
simple microcanonical ensemble (states with given U, V, N) it is indeed. The
advantage is that it is easier to generalize for more complex systems. That is
where we gain in this formalism. The only thing we have shown above is that
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for a closed system we get the same answers, which shows that the procedure is
OK.

How to deal with discrete eigenvalues.

So far we have described our state vectors in a Hilbert space with states
at a given energy, volume, and particle number. Since the Hamiltonian is the
operator that governs all quantum mechanics, volume and particle number are
ingredients of the Hamiltonian. But energy is the outcome! Therefore, it is
much better to work in the more natural Hilbert space of state vectors that
correspond to the Hamiltonian. The density operator in this case is

ρ = Cδ(U −H) (6.73)

where C is some constant, determined by 1 = CTr δ(U −H).
This form of the density operator in the microcanonical ensemble implicitly

assumes that we take the thermodynamic limit. For a finite system the energy
eigenvalues are discrete and the δ -function will yield a number of infinitely high
peaks. Therefore we are not able to take the derivative

(
∂S
∂U

)
which is needed

to define the temperature!
We can, however, rewrite the delta function. Using a standard property we

find:

ρ =
C

V
δ(

U

V
− H

V
) (6.74)

and in the thermodynamic limit the spacing in the energy density U
V goes to

zero. But that is the wrong order of limits, which can lead to problems!

Mathematical details about delta function limits.

In order to be more precise mathematically, we need a limiting procedure
for the delta-function. For example, one can choose a Gaussian approximation

ρ = C
1

ε
√

π
e−

(U−H)2

ε2 (6.75)

which gives the correct result in the limit ε → 0. In order to evaluate the trace
of ρlogρ we now have to sum over states with all possible values of the energy.
Clearly we will get a value for the entropy which is defined for all values of U,
and the partial derivative of the entropy with respect to U will give a good value
for the inverse temperature. But now we have two limits to deal with: N →∞
and ε → 0. The thermodynamic limit N →∞ has to be taken after all physical
state variables have been set equal to the values needed in the problem. For
example, if needed the limit T → 0 has to be taken first. The limit ε → 0
is not related to a physical state variable. This limiting procedure is a purely
mathematical trick. Therefore, the order of taking limits is first to assign all
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intensive state variables their correct value, then to take the thermodynamic
limit N → ∞, and finally consider the results as a function of ε and take the
limit ε → 0. In practice, one should make N large and choose ε as small as
possible, but large compared to the average spacing of the energy levels. We
will discuss this question by looking at a simple example.

A quantum system in one dimension has single-particle eigenstates with
energy nω, with n = 1, 2, 3, · · ·. The energy of N particles is given by (

∑N
i ni)ω.

Hence the entropy is equal to

S(U,N) = −kB

∑
n1,n2,.,nN

C
1

ε
√

π
e−

(U−(
∑N

i ni)ω)2

ε2 log
(

C
1

ε
√

π
e−

(U−(
∑N

i ni)ω)2

ε2

)

(6.76)
We assume that the particles are not identical. Next we set xi = ni

ω
Nε and

assume that ε À ω
N , in agreement with the statement that we can only take

the limit ε → 0 after taking the limit N → ∞. The quantity ω
N is the spacing

between the possible energy values per particle and we have to choose ε much
larger than this value. The summations are replaced by integrations and we
have

S(U,N) = −kB

(
Nε

ω

)N ∫
· · ·

∫
dx1 · · · dxN

C
1

ε
√

π
e−( U

ε −Nx1−···−NxN )2
[
log

(
C

1
ε
√

π

)
− (

U

ε
−Nx1 − · · · −NxN )2

]

(6.77)
Now we define x =

∑
i xi and replace the integration variables by x, x2, · · · , xN .

Since all the variables xi have to be positive, we know that for a given value
of x all other variables are limited by

∑N
i=2 xi 6 x. Since the integrand only

depends on the value of x, the integration over x2, · · · , xN is just a geometrical
factor g(x). Therefore, the entropy is equal to

S(U,N) = −kB

(
εN

ω

)N ∫
dxg(x)

C
1

ε
√

π
e−( U

ε −Nx)2
[
log

(
C

1
ε
√

π

)
− (

U

ε
−Nx)2

]
(6.78)

The coefficient C follows from Tr ρ = 1:

C−1 = Tr
1

ε
√

π
e−

(U−H)2

ε2 (6.79)

or

C−1 =
∑

n1,n2,.,nN

1
ε
√

π
e−

(U−(
∑N

i ni)ω)2

ε2 (6.80)
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Replacing the sum by an integral yields:

C−1 =
(

Nε

ω

)N ∫
· · ·

∫
dx1 · · · dxN

1
ε
√

π
e−( U

ε −Nx1−···−NxN )2 (6.81)

and with x =
∑

i xi we get

C−1 =
(

Nε

ω

)N ∫
dx g(x)

1
ε
√

π
e−( U

ε −Nx)2 (6.82)

This reduces the entropy to

S(U,N) = −kB

∫
dx g(x) e−( U

ε −Nx)2
[
log

(
C 1

ε
√

π

)
− (U

ε −Nx)2
]

∫
dx g(x) e−( U

ε −Nx)2
(6.83)

In order to prepare for taking the thermodynamic limit we now express the
entropy as a function of the energy per particle u and the number of particles.
The thermodynamic limit is taken in such a way that the energy per particle is
constant. This gives for the entropy per particle, s = S

N :

s(u,N) = −kB

∫
dx g(x) e−N2( u

ε−x)2
[

1
N log

(
C 1

ε
√

π

)
−N(u

ε − x)2
]

∫
dx g(x) e−N2( u

ε−x)2
(6.84)

This expression can be split into two parts, by separating the two parts of the
integral in the numerator, and we have s(u,N) = s1(u,N) + s2(u,N) with

s1(u,N) = −kB
1
N

log
(

C
1

ε
√

π

)
(6.85)

and

s2(u,N) = NkB

∫
dx g(x) e−N2( u

ε−x)2
[
(u

ε − x)2
]

∫
dx g(x) e−N2( u

ε−x)2
(6.86)

The second term can be written in the form:

s2(u,N) =
1
2
kB

∂

∂N
log

(∫
dx g(x) e−N2( u

ε−x)2
)

(6.87)

In the thermodynamic limit the exponent is sharply peaked and the integral is
proportional to g(u

ε ) 1
N . Hence s2(u,N) is proportional to ∂

∂N log(N) or 1
N , and

goes to zero in the thermodynamic limit.
Using (6.82) for C we find

s(u,N) = kB
1
N

log

((
Nε

ω

)N ∫
dx g(x) e−N2( u

ε−x)2

)
(6.88)
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For large values of N we can replace the exponent by
√

π
N δ(u

ε − x) and we get

s(u,N) = kB
1
N

log

((
Nε

ω

)N ∫
dx g(x)

√
π

N
δ(

u

ε
− x)

)
(6.89)

or

s(u, N) = kB
1
N

log

((
Nε

ω

)N

g(
u

ε
)
√

π

N

)
(6.90)

The geometrical factor g(x) is easily calculated

g(x) =
∫ x

0

dx2

∫ x−x2

0

dx3 · · ·
∫ x−···−xN−1

0

dxN =
1

(N − 1)!
xN−1 (6.91)

Hence the entropy is

s(u,N) = kB
1
N

log

((
Nε

ω

)N 1
(N − 1)!

(u

ε

)N−1
√

π

N

)
(6.92)

s(u,N) = kB
1
N

log

((
N

ω

)N 1
N !

uN ε
√

π
1
u

)
(6.93)

We can now ignore the factor ε
√

π 1
u in the logarithm, since that leads to a term

proportional to 1
N , which disappears in the thermodynamic limit.

For large values of N the value of N ! is about NNe−N and hence we find

s(u, N) = kB
1
N

log
(
ω−NeNuN

)
= kB

(
log(

u

ω
) + 1

)
(6.94)

The first conclusion for our model system is that the entropy is equal to
NkB log( U

Nω ) in the thermodynamic limit. Hence the temperature and energy
are related by U = NkBT . The second conclusion is that in the thermodynamic
limit the value of S does not depend on ε. Hence we can now take the limit of
ε → 0 very easily, and use delta functions. This is what we tried to show. For
a finite system the use of delta functions is not justified, such a procedure only
makes sense in the thermodynamic limit.

6.4 Equivalence of entropy definitions for canon-
ical ensemble.

In the previous section we used the information-theoretical definition of the en-
tropy to discuss the microcanonical ensemble. The resulting density matrix was
exactly what we expected from a discussion in chapter 2. Only those states with
energy U are available, and all have the same probability. Since the canonical
and grand-canonical ensemble are based on the microcanonical ensemble, the
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results for the entropy and density matrix should also be the same in this case,
independent of which definition of the entropy we use. In this section we illus-
trate this equivalence directly. This direct method also shows how to use the
maximum entropy principle.

In the canonical ensemble we specify only the average energy U of the system,
the volume V and the number of particles N. If other extensive state variables
are known, they are also included in this list. The trace in the expressions for
the entropy is taken over all states with volume V, number of particles N, and
other extensive state variables. These variables are not allowed to fluctuate.
The energy is allowed to vary, however, and we sum over states with all possible
energies. The additional requirement we have to impose is U = Tr Hρ for the
average energy. This requirement is taken into account via a Lagrange multiplier
β, and we have to maximize

X = −kBTr ρ log ρ + λkB (Tr ρ− 1)− βkB (Tr ρH − U) (6.95)

The choice of sign in front of β is conventional. Clearly we see that
(

∂X
∂λ

)
=

0 ⇒ Tr ρ = 1 and
(

∂X
∂β

)
= 0 ⇒ Tr ρH = U . Maximization with respect to ρ

leads to

0 =
(

∂X

∂ρnm

)
= kBλδnm − kB(log ρ)mn − kBδnm − βkBHmn (6.96)

where we have used the results derived in the previous section. The addition of
one term did not make the derivative much more complicated. This is valid in
general. Most constraints we want to add are linear, and give very easy terms
in the Lagrange equation!

The minimization leads to

kB(log ρ)mn = kB(λ− 1)δnm − βkBHmn (6.97)

and hence

ρ = eλ−1e−βH = Ce−βH (6.98)

The normalization constant C (or λ) follows again from the requirement that
Tr ρ = 1. The constant β is obtained by demanding Tr ρH = U . This condition
can be compared with thermodynamical expressions via (6.97). If we multiply
(6.97) by ρnm and sum over n and m, we obtain

Tr ρ log ρ = (λ− 1)Tr ρ− βTr ρH (6.99)

and using the definition of the entropy and the constraints on the density matrix:

S = −kB(λ− 1) + kBβU (6.100)

The constant λ− 1 is equal to log C. Since Tr ρ = 1 we have C−1 = Tr e−βH .
The last expression is the partition function Z at a temperature 1

βkB
. The
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logarithm of the partition function is related to the Helmholtz free energy,
F (T ) = −kBT logZ. Therefore λ − 1 = F (T )

kBT at a temperature T = 1
βkB

.
In other words we find

TS = −kBT
F (T )
kBT

+ kBTβU (6.101)

which is the correct definition of the Helmholtz free energy in thermodynamics
only if we require that the Lagrange multiplier β is equal to 1

kBT . The tempera-
ture is in this formalism related to a Lagrange multiplier which constraints the
average energy! This is another way of defining the temperature, and we have
just shown that this definition is equivalent to the standard thermodynamical
definition, since it leads to the same expression for the Helmholtz free energy.

In the grand canonical ensemble we allow N to vary and take the trace over
all states with all possible values of the energy and number of particles. The
expression to maximize in this case is

X = −kBTr ρ log ρ + λkB (Tr ρ− 1)−

βkB (Tr ρH− U) + βµkB (Tr ρN−N) (6.102)

The maximum occurs when

ρ = Ce−β(H−µN) (6.103)

The values of β and C are determined as before, but µ follows from the require-
ment that the average number of particles is equal to N. One can show that µ
must be equal to the standard definition of the chemical potential in the same
way as we showed that β is equal to 1

kBT .

6.5 Problems for chapter 6

Problem 1.

Show that the expression for the density matrix ρ = Ce−β(H−µN) corresponds
to an extremum of (6.102). By analyzing the grand potential Ω show that µ
is the chemical potential.

Problem 2.

Show that the solution ρ = Ce−βH for the density matrix for the canon-
ical ensemble, obtained by finding the extremum of (6.95), corresponds to a
maximum of X.

Problem 3.



6.5. PROBLEMS FOR CHAPTER 6 137

A system is described by a state in a two-dimensional Hilbert space. The
Hamiltonian is given by

H =
(

ε α∗

α 2ε

)

Assume that ε À |α| and that βε ¿ 1.

(A) Calculate the partition function up to second order in β.

(B) Calculate the high temperature limit of the heat capacity.

(C) Suppose that α = N
V and that the density is small. Calculate the pressure

in the large volume and high temperature limit.

Problem 4.

A quantum mechanical system is described by a Hamiltonian H = H0 +κV ,
with [H0, V ] = 0. κ is a small constant. The Helmholtz free energy is Fκ(T ).
Calculate the change in Helmholtz free energy, ∆F = Fκ − F0 for this system
up to second order in κ

kBT .

Problem 5.

In a two-dimensional Hilbert space the density operator is given by its matrix
elements:

ρ =
(

x R
R∗ 1− x

)

This form is clearly Hermitian and has trace one. Calculate the entropy as
a function of x and R, and find the values of x and R that make the entropy
maximal. Note that you still need to check the condition that the matrix is
positive! Also, show that it is a maximum!

Problem 6.

A quantum mechanical system is described by a simple Hamiltonian H,
which obeys H2 = 1. Evaluate the partition function for this system. Calculate
the internal energy for T → 0 and T →∞.

Problem 7.

A system is described by a density operator ρ. In this problem, the eigen-
values of this operator are either 0 or 1. The number of particles in the system
is N and the volume of the system is V.
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(A) How many eigenvalues of ρ are equal to 1?

(B) What is the entropy of the system?

(C) Assume that the particles are independent. If a single particle is described
by a density operator ρi, how do you construct ρ from the ρi?



Chapter 7

Classical statistical
mechanics.

7.1 Relation between quantum and classical me-
chanics.

Choice of basis.

Based on the knowledge of quantum statistical mechanics, it is straightfor-
ward to derive the expressions valid for a classical description of a many particle
system. A classical state of a system is defined by the values of the positions
~ri and momenta ~pi. These vectors are combined in a single vector ~X in a 6N-
dimensional phase-space. Every value of ~X corresponds to a certain state of
the system. The classical Hamiltonian H( ~X) is constructed from the quantum
mechanical one by replacing momentum operators by numbers ~pi. A good basis
for the expressions for the density matrix is therefore the set of all vectors | ~X >.

In quantum mechanics it is impossible to specify both the position and the
momentum of a particle at the same time, since the position and momentum
operators do not commute. The commutators are proportional to ~ and one
way of thinking about the classical limit of quantum mechanics is to assume
that ~ → 0. In this sense the position and momentum operators do commute
in the classical limit and we are allowed to use their simultaneous eigenvalues
as labels characterizing the state of a system.

Wigner distribution function.

In a more formal approach we use so-called Wigner distribution functions,
defined by

139
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W (~k,~r) =
∫

d3xeı~k~x < ~r +
1
2
~x|ρ|~r − 1

2
~x > (7.1)

for a system with only one particle. In the formula above ρ is the density matrix
describing this system. This formula represents a partial Fourier transform. If
we want to transform the complete density matrix we need two exponentials
and two three dimensional integrations, because we need to transform the infor-
mation contained via ~r and ~r′ in < ~r′|ρ|~r > both. But now we only transform
half of the space, which still leaves us with a function of two three dimensional
vectors.

It is easy to show that

1
(2π)3

∫
d3kW (~k, ~r) =< ~r|ρ|~r > (7.2)

and

1
(2π)3

∫
d3rW (~k, ~r) =< ~k|ρ|~k > (7.3)

These are the probability functions for finding the particle at position ~r or
with momentum ~k. In order to derive the last expression we have used

|~x >= (2π)−
3
2

∫
d3keı~k~x|~k > (7.4)

to get

W (~k, ~r) =
∫

d3xeı~k~x 1
(2π)3

∫
d3k′

∫
d3k”ei[~k”(~r− 1

2~x)−~k′(~r+ 1
2~x)] < ~k′|ρ|~k” >=

∫
d3k′

∫
d3k”δ(~k − 1

2
[~k′ + ~k”])ei[~k”~r−~k′~r] < ~k′|ρ|~k” > (7.5)

Integration over ~r gives an extra delta-function δ(~k′−~k”) and the stated result
follows.

Averages.

Suppose O(~k, ~r) is a classical operator in phase space and ifO is the quantum-
mechanical generalization of this classical operator. In a number of cases it is
possible to show that the quantum-mechanical expectation value of the operator
< O > is given by

< O >=
∫

d3k

∫
d3xO(~k, ~x)W (~k, ~x) (7.6)

which relates classical values and quantum mechanical values of O and O. This
procedure is not always possible, though, and our discussion only serves the
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purpose to illustrate that a connection between quantum mechanical density
operators and classical distribution functions can be made. In general, the
expressions one needs for the distribution function W are more complicated
than the form given by Wigner.

Classical density matrix.

In order to give the formulas for classical statistical mechanics we consider
the canonical ensemble first. Since the Hamiltonian in the classical limit is
diagonal in ~X, we find that the density matrix is diagonal too, and that

< ~X|ρ| ~X >= ρ( ~X) = Ce−βH( ~X) (7.7)

In many ways this form of ρ can be directly compared with the function W
introduced in the previous paragraph.

Volume per state.

The normalization constant C follows again from the requirement that Trρ =
1. This trace implies a sum over all possible states. In phase space, this is
replaced by an integral. We do have to multiply this integral by a volume factor,
though. The magnitude of this volume factor follows from the old quantum
mechanical quantization condition

∮
pdq = nh (7.8)

where p is the generalized momentum corresponding to the generalized coordi-
nate q. This contour integral is an integral multiple of Planck’s constant h. In
two-dimensional phase space [p, q] the area inside a quantum orbit is nh, hence
the area between two quantum orbits is h itself. In other words, the area per
orbit is h. This value is consistent with the Heisenberg uncertainty relation.
If we construct a wave-package from plane-waves, we find that the position is
specified within ∆x and the corresponding momentum coordinate within ∆p.
Also, ∆x∆p > α~ for a value of α which is about one. If we represent the states
of a system by a grid of points in the p-x plane the distance between the points
in the x-direction has to be about ∆x. If grid points are closer together than
∆x they could not be distinguished and if they are further apart they do not
cover all space. Similarly, the distance of the grid points in p-space should be
∆p and hence the volume per point in one dimension should be ∆x∆p, or about
α~. The formula above shows that we have to take α = 2π.

Classical integrals.

If the N particles in our system are not identical, we therefore have the
rule
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∑

~X

⇒ 1
h3N

∫
d ~X (7.9)

If the particles are identical, however, any permutation of the coordinates gives
the same state, and we have to replace the sum by

∑

~X

⇒ 1
N !h3N

∫
d ~X (7.10)

As a result, the classical partition function is equal to

Z =
1

N !h3N

∫
d ~Xe−βH( ~X) (7.11)

and the density matrix is

ρ( ~X) =
1
Z e−βH( ~X) (7.12)

7.2 Classical formulation of statistical mechani-
cal properties.

Entropy.

The entropy follows from the information-theoretical definition 6.29 and we
find

S(T, V, N) = − kB

ZN !h3N

∫
d ~Xe−βH( ~X) log

(
1
Z e−βH( ~X)

)
=

kB

ZN !h3N

∫
d ~Xe−βH( ~X)

(
log(Z) + βH( ~X)

)
= kB logZ + kBβU (7.13)

Note that the volume V is included in this formula, it simply limits the
integrations over the coordinates ~xi. As expected, our equation leads to F =
U − TS and our definitions are equivalent to the old definitions of the entropy.
This was already shown explicitly in the previous chapter for the canonical
ensemble.

Density of states.

The micro-canonical ensemble can be treated in a similar way. In this case
the density matrix is equal to

ρ( ~X) = Cδ(U −H( ~X)) (7.14)
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where the normalization constant C follows from Trρ = 1, or

C−1 = D(U, V, N) =
1

N !h3N

∫
d ~Xδ(U −H( ~X)) (7.15)

Note that in classical mechanics there are no problems with discrete levels, the
set of possible values for H( ~X) is continuous. If the particles are not identical,
the factor N! should be omitted. The function D(U) is called the density of
states. This density of states also relates the micro-canonical and the canonical
ensemble via

Z =
1

N !h3N

∫
d ~Xe−βH( ~X) =

1
N !h3N

∫
d ~X

∫
duδ(u−H( ~X))e−βu (7.16)

which leads to

Z(T, V, N) =
∫

duD(u, V,N)e−βu (7.17)

The partition function is the Laplace transform of the density of states. In
many cases it is easier to evaluate Z and then this relation can be inverted
to obtain the density of states D. One important technical detail is that the
energy integral is bounded at the lower end. There is a ground state energy,
and a minimum energy level. We can always shift our energy scale so that the
minimum energy is zero. In that case we can write

D(U, V,N) =
1

2πı

∫ c+ı∞

c−ı∞
dtestZ(t, V, N) (7.18)

Grand partition function.

The grand canonical ensemble follows from the density matrix defined in the
much larger space of states with all possible numbers of particles. The grand
partition function now involves a sum over all possible combinations of particles
and is equal to

Z(T, µ, V ) =
∑

N

1
N !h3N

∫
d ~Xe−β(H( ~X,N)−µN) (7.19)

This leads to

Z(T, µ, V ) =
∑

N

e
µN

kBT Z(T, N, V ) (7.20)

which is exactly the same relation as we derived in before. This shows that
our classical formalism is consistent with the quantum statistical approach. In
deriving classical statistical mechanics from its quantum analogue, the factors
N ! and h3N come in naturally. It is also possible to postulate classical statistical
mechanics directly, but then these factors have to be introduced in some ad-hoc
fashion.
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7.3 Ergodic theorem.

Connection with experiment.

Most experiments involve systems that involve many degrees of freedom. In
all those cases we are only interested in average quantities. All average quantities
follow from the quantum mechanical formula, and can be expressed as classical
averages if we change sums to integrals:

< A >=
1

N !h3N

∫
d ~Xρ( ~X)A( ~X) (7.21)

The factor N ! is needed for indistinguishable particles, and should be omitted
for distinguishable particles.

The previous formula does, of course, not describe the way we measure
quantities! In a measurement we often consider time averaged quantities or
space averaged quantities. In the first case, we start the system at an initial
state ~Xin at t = 0 and use Hamilton’s equations

(
∂~pi

∂t

)
= −

(
∂H
∂~xi

)
and

(
∂~xi

∂t

)
=

+
(

∂H
∂~pi

)
to calculate ~X(t). We then evaluate

< A >τ (t) =
1
τ

∫ t+τ

t

A( ~X(t′))dt′ (7.22)

where ~X(t) is the state of the system at time t. The value of this average
depends on the measurement time τ and on the initial state. Birkhoff showed
that in general limτ→∞ < A >τ (t) is independent of the initial conditions. So
if we take τ large enough it does not matter where we start. Note that in cases
where we have external potentials that vary with time we cannot make τ too
large, it has to be small compared to the time scale of the external potential. In
different words, the effects of external potentials that vary too rapidly are not
described by thermodynamic equilibrium processes anymore.

Equivalency of averages.

Now we ask the more important question. Under what conditions is this
measured quantity equal to the thermodynamical ensemble average? In the
quantum-mechanical case we argued that all accessible quantum states are
equally probable if the total energy U of the system is fixed. We needed to
invoke some random external small perturbation to allow the system to switch
quantum states. In the classical case we need a similar argument.

The time evolution of a classical system is determined by Hamilton’s equa-
tions:

∂~pi

∂t
= −∂H

∂~xi
,

∂~xi

∂t
=

∂H

∂~pi
(7.23)



7.3. ERGODIC THEOREM. 145

The trajectory ~X(t) is well-described. For an isolated system the energy is
conserved, and ~X(t) is confined on the surface in phase space given by H( ~X) =
U . In the micro-canonical ensemble ρ( ~X) = Cδ(H( ~X)−U) and all states with
H( ~X) = U are included in the average. In the time average, only a small subset
of these states is sampled. The requirement that both averages are the same
leads to the requirement that in the time τ , which has to be short compared
with the time scale of changes in < A > (t), the trajectory ~X(t) in phase
space samples all parts of the accessible phase space equally well. If this is
true, and the time-average is equal to the ensemble average, the system is called
ergodic. Most systems with many degrees of freedom seem to obey this ergodic
hypothesis.

If a system is ergodic the orbit ~X(t) should approach any point in the acces-
sible region in phase space arbitrarily close. Originally it was thought that this
statement could be related to Poincaré’s theorem. This theorem states that a
system having a finite energy and a finite volume will, after a sufficiently long
time, return to an arbitrary small neighborhood of almost any given initial state.
The time involved, however, is prohibitively long. It is on the order of eN , where
N is the number of degrees of freedom.

Chaos.

A more useful approach combines the classical trajectories with small exter-
nal perturbations, like in the quantum-mechanical treatment. An orbit ~X(t) is
called chaotic if an arbitrary small change in the initial conditions in general
leads to a very large change in the state of the system at a later time t. Classical
statistical mechanics therefore requires that most of the orbits of the system are
chaotic. The time τ still has to be large in order to obtain a good sampling of
phase space. For meta-stable systems like glass the time τ can be longer than a
human life-span. This means that the ergodic theorem in itself is not sufficient
for the time-average and ensemble-average to be the same in a real experiment.

If we want to measure properties of a system, we have to connect the system
to some outside instrument. If we want to specify any intensive state variable
of a system, we have to connect it to a reservoir. In all these cases there will
be small perturbations on the system and the description given in the previous
paragraph is valid. What happens in a truly isolated system though? The
answer to this question is impossible to derive from experiments, since any
experiment involves a perturbation. Hence questions pertaining to a statistical
mechanical description of a truly isolated system in terms of ensembles are
purely academic. Nevertheless scientists have tried to answer this question and
two opposing points of view have been defended. Landau claims that it is not
possible to give such a description and that you need outside perturbations,
while Khinchin tells us that it is possible to give such a description.
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7.4 What is chaos?

One dimension is not enough.

The nature of chaos is best understood by considering some simple examples.
First, we investigate a one-dimensional harmonic oscillator. The Hamiltonian
is given by

H(x, p) =
1
2
(p2 + x2) (7.24)

with solutions

x(t) = x0 cos(t) + p0 sin(t) , p(t) = −x0 sin(t) + p0 cos(t) (7.25)

Phase space is two-dimensional, and the surface of states with energy U is
a circle with radius

√
2U . Each orbit (x(t), p(t)) samples all states on this

available surface. These orbits are not chaotic, since a small change in the
initial conditions gives only a small change in the state at arbitrary times t.
Also, the time needed to sample all of the available states is the period of the
oscillator, and this is a long time for the system. Any average over a complete
period essentially throws away all information about details of the system! In
a case like this one would like to measure over a much shorter time. Hence a
one-dimensional harmonic oscillator is an exceptional case, it is too simple!

Two dimensions will do.

A two-dimensional harmonic oscillator is described by the Hamiltonian

H(x, y, px, py) =
1
2
(p2

x + p2
y + x2 + y2) (7.26)

and the solutions for the orbits are

x(t) = x0 cos(t) + px0 sin(t) , y(t) = y0 cos(t) + py0 sin(t)

px(t) = −x0 sin(t) + px0 cos(t) , py(t) = −x0 sin(t) + py0 cos(t) (7.27)

In this case phase space is four-dimensional, and the surface of constant energy
is a three-dimensional hyper-sphere.

Poincaré surface.

In order to present results for systems with many degrees of freedom we
often use a simple representation. An arbitrary orbit is represented by its cross-
sections with a number of two-dimensional cuts through the constant energy
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surface. For the two-dimensional oscillator at a given energy U only three vari-
ables are independent. Suppose that y is the dependent variable. In order to
get a two-dimensional representation of the orbit, we have to eliminate one ad-
ditional variable. We will choose x and consider all states of the system with
x = 0. Therefore we work in the plane (px, py). The energy U is equal to
1
2 (p2

x + p2
y) + 1

2y2 and hence the available part of phase space in this plane is
given by

p2
x + p2

y 6 2U (7.28)

A chaotic orbit would sample all values of the momentum within this circle.
The trajectories of the harmonic oscillator are very regular, however. If we
assume that x0 = 1 and px0 = 0, the condition x = 0 occurs at time t = 2πn
for n = 0, 1, 2, · · · At these times px = 0 and py = ±py0; hence only two points
are sampled!

Harmonic systems are too simple. There are three constants of motion.
Jx = x2 + p2

x and Jy = y2 + p2
y are conserved, and the phase angle between the

x and y part of the orbit is also constant.

Large systems.

This conclusion can be generalized to a system of N three-dimensional har-
monic oscillators. All orbits are non-chaotic, and such a system cannot be
described by statistical mechanical methods! If N is very large, however, and
the initial conditions of the oscillators are random, such a system does give the
correct statistical mechanical results if we measure variables as spatial averages!
Randomness has to be brought in, however. Either the initial states are random,
or each oscillator is perturbed randomly and continuously.

This trick only works when the oscillators are identical, and we essentially
map all coordinates into a six-dimensional phase space for a single harmonic
oscillator. Measurements which go beyond this simple projection of phase space
still have to be discussed carefully. Also, there are problems with correlations.
If there are no random perturbations the relative motion of any two oscillators is
completely determined by the initial conditions and hence cannot be described
by a statistical mechanical ensemble average.

Additional interactions.

The harmonic oscillator is easy since it only contains second order terms.
One has to include higher order terms to see interesting effects. A standard
example is the Hénon-Heiles potential

V (x, y) =
1
2
x2 +

1
2
y2 + x2y − 1

3
y3 (7.29)

Near the origin particles are still bound, because the third order terms are small.
In the y direction, however, the potential goes to minus infinity, and a quantum
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particle would always tunnel out. A classical particle will remain bound, as long
as its energy is smaller than the minimum barrier. The y direction gives us this
minimum, and for x = 0 we have V (0, y) = 1

2y2 − 1
3y3, which has a maximum

at y = 1 with value 1
6 . Hence we have to restrict the energy U to values less

then one-sixth and larger than zero. The values for x and y corresponding to
V (x, y) = 1

6 are given by

(2y + 1)(3x2 − (y − 1)2) = 0 (7.30)

which corresponds to three straight lines. A contour map of V(x,y) is not hard
to sketch.
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Figure 7.1: Hénon-Heiles potential.

The part of phase space with x = 0 available in the (px, py) plane is given
by a circle of radius

√
2U . The equations of motion governing this system are

easily derived:

∂x

∂t
= px ,

∂y

∂t
= py

∂px

∂t
= −x− 2xy ,

∂py

∂t
= −y − x2 + y2 (7.31)

and they can be integrated starting from any value of (x, y, px, py) yielding and
energy U and a bound orbit. The results are very interesting. If U is very small,
all orbits behave more or less like normal harmonic oscillator orbits. If U is
close to 1

6 , almost all states correspond to a single chaotic orbit. For values
of the energy in between part of the states correspond to regular orbits, and
part of the states to a chaotic orbit. This chaotic orbit is the feature we need
in statistical mechanics. When a system contains many degrees of freedom
and higher order interactions, chaotic orbits become more pronounced at more
values of the energy. As a result, large systems can be described by statistical
mechanical tools.
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This example is studied in detail in a course on non-linear dynamics. An
important question, studied actively in that field, is the following. What are the
conditions for the Hamiltonian so that most of phase space for most energies
is covered by a chaotic orbital? In our words, can we construct a non-trivial
many body Hamiltonian for which statistical mechanics does not work? Note
that every Hamiltonian will have regular orbits, but the ergodic theorem is valid
only if these orbits have a measure zero.

7.5 Ideal gas in classical statistical mechanics.

The classical Hamiltonian for a system of N independent particles of mass m is
given by

H =
N∑

i=1

~p2
i

2m
(7.32)

Collisions are needed.

Such a system is clearly not ergodic. The solutions for the trajectories are
~xi(t) = ~xi(0) +~vit and sample only a small fraction of phase space. We have to
perform a spatial average in order to get some meaningful answers. In reality,
of course, there are collisions. These collisions are elastic and are assumed to be
instantaneous and they randomly redistribute the energy between all particles.
In this case, we can perform a time average to get a meaningful answer. The
latter procedure is more satisfying from an experimental point of view, and
allows us to compare experimental results with ensemble averages derived from
the Hamiltonian above.

If we assume that the atoms are hard spheres, instantaneous collisions are
the only possibility. But the interactions between atoms are more than that,
there are long range tails in the potential. This means that when the density of
the gas is too high, the interaction potential plays a role. Hence the ideal gas
is a first approximation of a description of a gas at low density, where we can
ignore the interaction terms.

Density of states.

We will calculate the entropy of the ideal gas in the micro-canonical ensem-
ble. We replace the delta functions by Gaussian exponentials, and use the limit
ε → 0. We have to use this ε-procedure in order to avoid problems with the
product of a delta-function and its logarithm. The entropy follows from

S(U, V,N) = −kB
1

N !h3N

∫
d ~XC

1
ε
√

π
e−

(U−H)2

ε2 log
(

C
1

ε
√

π
e−

(U−H)2

ε2

)
(7.33)
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Similar to what we derived before, it is possible to show that the last, exponen-
tial, factor in the logarithm does not give a contribution to the integral. We
expand the logarithm to get:

S(U, V, N) = −kB
1

N !h3N

∫
d ~XC

1
ε
√

π
e−

(U−H)2

ε2

[
log(C)− log(ε

√
π)− (U −H)2

ε2

]

(7.34)
The third term in the integral is very small when |U − H| À ε due to the

exponential. It is also very small when |U − H| ¿ ε because of the quadratic
term. Hence it only contributes when |U −H| ≈ ε. In that case the integrant
is proportional to 1

ε . But the volume in phase space that corresponds to this
value is proportional to ε6N−1 and hence the total contribution vanishes when
ε goes to zero.

The second factor in the logarithm gives a contribution kB log(ε
√

π) to the
entropy, and this factor vanishes in the thermodynamic limit. Hence we find

S(U, V, N) = −kB log(C) = kB log(D(U, V,N)) (7.35)

with

D(U, V,N) = C−1 =
1

N !h3N ε
√

π

∫
d ~Xe−

(U−H)2

ε2 (7.36)

Here we can again take the limit ε → 0 to recover the expression we derived
before. But note that we have used the thermodynamic limit, and we did take
it before the limit ε → 0. That is technically not correct. This was a topic of
much discussion in the early days of the development of statistical mechanics.

For an ideal gas the density of states D follows from

D(U, V,N) =
1

N !h3N

∫
dp3

1 · · · dp3
Nδ(U −

N∑

i=1

~p2
i

2m
)
∫

dr3
1 · · · dr3

N (7.37)

The spatial integral is easy and gives a factor V N . The integral over the mo-
menta is equal to the surface area of a 3N-dimensional hyper-sphere of radius√

2mU . This leads to

D(U, V,N) =
V N

N !h3N

2π
3N
2

(√
2mU

)3N−1

Γ( 3N
2 )

(7.38)

If N is even, Γ( 3N
2 ) = ( 3N

2 −1)! and if N is odd, Γ( 3N
2 ) =

√
π2−

3N−1
2 (3N−2)!!

In both cases we can approximate log(Γ( 3N
2 )) by ( 3N−1

2 ) log( 3N
2 )− 3N

2 .
This assumes that N is very large (thermodynamic limit) and that we can

replace N−1 by N . The entropy in this limit is (again ignoring terms not linear
in N)
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S(U, V,N) = kB log(
V N

N !h3N

(√
2πmU

)3N

)− 3
2
NkB log(

3
2
N) +

3
2
kBN =

kBN log(
V (2πmU)

3
2

Nh3
) + NkB −NkB log

(
(
3
2
N)

3
2

)
+

3
2
NkB =

NkB log
(

V

N
(
4πmU

3Nh2
)

3
2

)
+

5
2
NkB (7.39)

This is in agreement with what we derived before. Using 1
T =

(
∂S
∂U

)
V,N

we find 1
T = 3

2
NkB

U as expected. Replacing U by 3
2NkBT in the formula for

the entropy yields the old Sackur-tetrode formula. Hence the ideal gas is the
described by the same formulas in classical statistical mechanics as in quantum
statistical mechanics. In quantum statistical mechanics we needed to take the
high temperature (or low density) limit to arrive at the Sackur-tetrode formula.
In this limit quantum effects were not important, and it comes as no surprise
that we recover the same formula in the classical limit!

7.6 Normal systems.

In the derivations for the entropy in the micro-canonical ensemble we have
often made use of the thermodynamic limit. This means that if we take the
limit N → ∞ with U

N = U and V
N = V constant. For the ideal gas we see

immediately that in this limit S
N also approaches a constant value S. Systems

for which this is true are called normal. The ideal gas is a normal system, and
all other systems we have discussed and will discuss are normal. If a system is
not normal, standard statistical mechanics does not apply. It is easy to show
that all systems with short-range interactions are normal. An abnormal system
therefore has to have long-range interactions between the particles. A simple
example of a abnormal system is a gravitational system with a uniform mass
density µ inside a sphere of radius R. The potential energy of such a system is

Vpot =
∫

r,r′<R

d3rd3r′
µ2

|~r − ~r′| (7.40)

For large values of R this scales with R5 ∝ V
5
3 . Hence in the limit N →

∞ with V
N constant the potential energy does not approach a constant, but

diverges.

7.7 Quadratic variables.

The kinetic energy for an ideal gas has a very simple form. This is related to
the fact that the momentum appears as a second power in the Hamiltonian. A
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very general statement for such variables is easy to prove in classical statistical
mechanics. Suppose we have one component c of the 6N-dimensional vector ~X
in phase space which appears in the Hamiltonian in a quadratic way:

H( ~X) = H ′ + αc2 (7.41)

where H ′ does not depend on c. The partition function then has the form

Z = Z ′
∫ ∞

−∞
dce

− αc2
kBT = Z ′

√
πkBT

α
(7.42)

where Z ′ does not contain any reference to the component c anymore. The
internal energy U is related to Z by U = − ∂

∂β log(Z) and hence we find

U = U ′ +
1
2
kBT (7.43)

Hence the energy associated with a quadratic variable is simply 1
2kBT .

Diatomic gas.

For an ideal mono-atomic gas we have kinetic energy only, and since this
involves 3N components, the internal energy of an ideal gas is 3

2NkBT . For an
ideal diatomic gas the situation is more complicated. At relatively low temper-
atures only the motion of the center of mass plays a role and the internal energy
is again 3

2NkBT . At intermediate temperatures the molecules will rotate freely,
adding two quadratic variables to the Hamiltonian, e.g. the two rotational
momenta. Hence the energy is 5

2NkBT . At high temperatures the atoms are
able to vibrate. This now adds two quadratic coordinates to the Hamiltonian,
one momentum variable and one variable representing the distance between the
atoms. Hence the energy is 7

2NkBT . At very high temperatures the molecules
will start to break apart and we lose the vibrational bond energy associated
with the position coordinate. The two atoms together are now described by six
momentum coordinates and the energy becomes 3NkBT .

7.8 Effects of the potential energy.

The ideal gas is an exceptional system, since it contains no potential energy term
in the Hamiltonian. As a result D is proportional to V N and the only volume
dependence of the entropy is a term NkB log(V ). Because

(
∂S
∂V

)
U,N

= p
T we

find pV = NkBT . Hence the ideal gas law holds for any system for which
the Hamiltonian does not depend on the generalized coordinates, but only on
the momenta! A second case occurs when we assume that each molecule has
a finite volume b. The integration over each spatial coordinate then excludes
a volume (N − 1)b and D is proportional to (V − Nb)N for large values of N,
where (N −1)b ≈ Nb. This gives rise to the factor V −Nb in the van der Waals
equation of state.



7.8. EFFECTS OF THE POTENTIAL ENERGY. 153

In a more general case, the Hamiltonian for the classical particles contains
a potential energy U, and we have

H =
N∑

i=1

p2
i

2m
+ U(~r1, ~r2, · · · , ~rN ) (7.44)

In many cases the potential energy obeys a given scaling relation. For example,
assume that

U(λ~r1, · · · , λ~rN ) = λγU(~r1, · · · , ~rN ) (7.45)

If the interactions are pure Coulomb interactions, then γ = −1. The partition
function in this case is

Z =
1

N !h3N

(∫
dpe

− p2

2mkBT

)3N ∫
· · ·

∫
d3r1 · · · d3rNe

−U(~r1,..,~rN )
kBT (7.46)

With β = 1
kBT this is equal to

Z =
1

N !

(√
2mkBTπ

h

)3N ∫

V

d3r1 · · ·
∫

V

d3rNe−U(β
1
γ ~r1,..,β

1
γ ~rN ) =

1
N !

(√
2mkBTπ

h

)3N

β−
3N
γ

∫

V β
3
γ

d3x1 · · ·
∫

V β
3
γ

d3xNe−U(~x1,···,~xN ) (7.47)

In other words, in terms of V and T we have

Z(T, V,N) =
1

N !

(√
2mkBπ

h

)3N

k
3N
γ

B T 3N( 1
2+ 1

γ )g(N,V T−
3
γ ) (7.48)

where g(N,x) is the result of the integration over all spatial coordinates. The
Helmholtz free energy F = −kBT logZ has therefore only one term which
depends on volume:

F (T, V, N) = kBT log(N !)− 3NkBT log
(√

2mkBπ

h

)
− 3NkBT

γ
log(kB)−

3NkBT (
1
2

+
1
γ

) log(T )− kBT log(g(N,V T−
3
γ )) (7.49)

The pressure follows from − (
∂F
∂V

)
N,T

. The equation of state takes the general
form

pT−1+ 3
γ = f(N,V T−

3
γ ) (7.50)
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where f(N, x) is a function related to g(N, x).
If there are only Coulomb interactions, γ = −1, and we find p = T 4f(N,V T 3).

In general we can write the equation in the form

pV

T
= V T−

3
γ f(N, V T−

3
γ (7.51)

The value of γ can therefore be determined from an experiment in which
we vary p and T in such a way that pV/T is constant. That implies V γ/T 3

is constant and a plot of V versus T gives γ. This description is valid for a
gas of Na+ and Cl− ions at low density. The forces between ions can only be
approximated by simple Coulomb forces when the ions are far apart. At small
distances one has to include the effects of induced dipoles. Also, for a gas of
inert atoms we expect to have van der Waals interactions, in which case we have
γ = −6.

7.9 Problems for chapter 7

Problem 1.

In the presence of a magnetic induction ~B the classical Hamiltonian rep-
resenting the energy of the system, including the interaction energy with the
external field, follows from the Hamiltonian H(~p1, · · · , ~pN , ~r1, · · · , ~rN ) without
a field by minimal substitution. The momenta ~pi are replaced by ~pi − e

c
~A(~ri)

where ~A is the vector potential defined by ~B = ~∇× ~A.
A. Calculate the free energy G(T, ~B, N, V ) = U − TS − ~M · ~B

B. Prove van Leeuwen’s theorem that diamagnetism does not exist in clas-
sical mechanics by showing that ~M( ~B) = ~0 for all values of the induction ~B.

Problem 2.

Consider a classical system of identical rod-like molecules which have a per-
manent electric dipole. The direction of each molecule is given by the angular
coordinates θi, φi. The Hamiltonian is given by

H(~pi, ~ri, pθi, pφi, θi, φi) =
N∑

i=1

(
~p2

i

2m
+

1
2
I[θ̇2

i + φ̇2
i sin2(θi)]− dE cos(θi)

)

where I is the moment of inertia of the molecule and d the electric dipole
moment. The electric field ~E is applied along the z-axis.

A. Calculate the free energy G(T, ~E, N, V ) = U − TS − ~P · ~E.
B. Calculate the polarization ~P (T, ~E,N, V ).
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C. Show that the dielectric constant ε in the high temperature limit is given
by ε = 1 + 4πNd2

3V kT .

Problem 3.

The Hamiltonian for a classical system of two identical particles is given by

H(~r1, ~r2, ~p1, ~p2) =
1

2m
(~p2

1 + ~p2
2) +

1
2
mω2(~r1 − ~r2)2

Evaluate the Helmholtz free energy and the internal energy of this system
as a function of temperature.

Problem 4.

The positions of the atoms in a one-dimensional solid are given by rn =
na + xn , n = 1 · · ·N . Neighboring atoms are connected by springs, and the
Hamiltonian is

H(x1, · · · , xN , p1, · · · , pN ) =
1

2m

N∑

i=1

p2
i +

K

2

N∑

i=2

(xi−1 − xi)2

Evaluate the internal energy and heat capacity of this solid.

Problem 5.

Consider a system of N identical particles in one dimension. The positions
xn of the particles are connected via |xn − xn+1| = a. This is a model of a
polymer chain with N − 1 links. The total length of the chain is L = |x1− xN |.
The potential energy of the n-th particle is mgxn. Calculate the coefficient of
linear thermal expansion for this system, and show that it is negative, like for
a rubber band. Ignore kinetic energy terms in the energy.

Problem 6.

The Hamiltonian for a classical single molecule consisting of two atoms is
given by:

H(~r1, ~r2, ~p1, ~p2) =
1

2m
(~p2

1 + ~p2
2) +

K

2
(|~r1 − ~r2| − d)2

Evaluate the Helmholtz free energy and the internal energy of a system of
N independent molecules of this type as a function of temperature.

Problem 7.
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The virial for a classical system is defined by V =
∑

i ~ri
d~pi

dt . Show that the
thermal average of V is equal to −3NkBT .

Problem 8.

Consider the quantity L(t) =
∑

i ~ri(t)~pi(t). Show that the thermal average
of L(t) is independent of time.



Chapter 8

Mean Field Theory: critical
temperature.

8.1 Introduction.

When are systems interesting?

In the previous chapters we have developed the principles of statistical me-
chanics. Most of the applications were to simple models. The only important
system we discussed in detail was a gas of independent particles. The model we
discussed for that system is very important, since a gas is almost always close
to ideal. Quantum effects can be explained in this model in a qualitative way.
The theoretical model of an ideal gas is also a very good starting point for the
treatment of a real gas, as we will see in a next chapter.

In this chapter we discuss systems of real interest. By that we mean systems
that show a phase transition from one state to another. Real systems, of course,
are quite complex, so we need to find a simple model that applies to realistic
systems, yet can be approximately solved by analytical means. Therefore, we
focus on a theoretical model which applies to many effects encountered in solids.

The most important characteristic of a solid is the fact that the atomic
positions are fixed, if we ignore the small fluctuations due to phonons. With
each atomic position we can associate other degrees of freedom, like spin or
atom-type. Solid state physics is concerned with the procedures of obtaining
information pertaining to these degrees of freedom, experimentally as well as
theoretically.

Theoretical models of internal degrees of freedom coupled to fixed lattice
sites are called lattice models. These models play an important role in many
areas of physics and can be generalized to cases where particles are moving and
are not restricted to specific lattice sites. Here we will only discuss the most
elementary member of the class of lattice models, the Ising model. We will use

157



158 CHAPTER 8. MEAN FIELD THEORY: CRITICAL TEMPERATURE.

this model to show many of the techniques employed in statistical mechanical
calculations of solids. In this sense the Ising model is a standard workhorse or
toy-problem. More complicated and realistic lattice models can be solved along
similar lines, although the calculations are more complicated and are often only
feasible numerically.

Basis for the Ising model.

The Ising model is a simple description of a magnetic solid. We assume that
each atom labelled with i has a total angular moment ~Si. This total angular
moment is a combination of the total spin and the total orbital angular momen-
tum of all the electrons. In a real system, both the direction and magnitude of
~Si are a function of time. The magnitude fluctuates around an average value,
which could be zero. The directions are able to change. For example, in iron
above the Curie temperature the individual atoms still have a local spin asso-
ciated with them, but the orientation of these spins is random. Only below the
Curie temperature do we find an ordered, ferromagnetic state.

A simple model for the internal energy of a collection of atomic spin-moments
is the Heisenberg model (the traditional semantics uses spin moment here, but
it can easily include orbital effects):

H = −
∑

i<j

JH
ij

~Si • ~Sj (8.1)

There are only interactions between pairs of spins and the form of the interaction
is a simple exchange type. The minus sign in front of the whole expression is a
standard convention. There are N particles, and we keep N fixed. In expression
8.1 each bond between two atoms is counted once and hence the values of i and
j are restricted by i < j. The total spin-moment ~S is given by

~S =
∑

i

~Si (8.2)

and can be changed by applying an external field ~H. Changing the volume
means changing the interatomic distances and this affects the coefficients JH

ij .
Note that both the Hamiltonian H and the spins ~Si are quantum-mechanical
operators. One possible limit is to make these into classical numbers, and we
can use the same expression 8.1 in a classical theory.

We will assume that the volume is fixed and do not calculate the pressure.
Hence the only extensive state variables are the entropy S and the total spin
~S; the corresponding intensive variables are the temperature T and the applied
magnetic field ~H. N does show up in all formulas, however, and the Gibbs-
Duhem relation is U = TS + µN + ~H ~M , where ~M is the magnetization density
associated with ~S.

Approximations.
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In a first approximation the strength of the exchange interaction depends on
the distance between lattice sites only. We denote the lattice sites by ~Ri and
have

H = −
∑

i<j

J(|~Ri − ~Rj |) ~Si • ~Sj (8.3)

A complete basis for the Hilbert space in which we diagonalize this Hamil-
tonian is

|S1, · · · , SN , S1
z , · · · , SN

z > (8.4)

Unfortunately, these are not eigenstates of of the Hamiltonian, since the opera-
tors ~Si are able to lower and raise the z quantum number. We have

~Si • ~Sj = S+
i S−j + S−i S+

j + SizSjz (8.5)

Because we do not know what to do with the first two terms, we ignore
them. The Hamiltonian is now

H = −
∑

i<j

J(|~Ri − ~Rj |)SizSjz (8.6)

and the states in 8.4 are now eigenstates of this Hamiltonian. This system is still
too complicated, though. Next, we assume that all spins are equal to one-half,
Si = 1

2 . This means that the z-component can take two values only, and we
write for the values 1

2σi~, which implies that σi = ±1.
In the previous paragraphs we stated that even the Heisenberg model is

hard to analyze. It can be simplified, however, for a system for which we know
that a phase transition to an ordered magnetic state exists. Another way of
looking a this is the following. Assume that the external magnetic field ~H is
always applied along a given direction. This direction is used to measure the
spin-components. Further, we ignore changes in the magnitude of the spin and
only allow the direction to change. Quantum-mechanically, the only degree of
freedom for each atomic site is the projection of the spin on the direction of the
external field. Therefore the eigenvalues of this projection are

Spar
i =

1
2
~σi (8.7)

with σi = ±1. Hence our quantum states are completely described by a set of
numbers {σ1, · · · , σN} and as we have seen before there are 2N possible states
for this system. The eigenstates are denoted by |σ1, · · · , σN >. The original
energy expression contains the product of spin-components perpendicular to the
quantization axis, but leaving out these terms, like we did above, corresponds
to assuming that they average out to zero. Therefore, the energy eigenvalue of
a given quantum state |σ1, · · · , σN > is

E {σ1, · · · , σN} = −
∑

i<j

J(|~Ri − ~Rj |)~
2

4
σiσj (8.8)
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Even this form is hard to analyze. Fortunately, in most cases the interactions
in solids are screened and as a result they have a short range. We therefore take
interactions into account between nearest neighbors only on the lattice and
assume that the interactions are the same between all nearest neighbor pairs.
A sum over nearest neighbors only is indicated by < ij > under the summation
sign. We also include the factor of four and Planck’s constant in the interaction
strength J and find for our final model for the energy eigenvalues

E {σ1, · · · , σN} = −J
∑

<ij>

σiσj (8.9)

The sum over nearest neighbors again counts each bond only once. For
example, for a simple mono-atomic structure

∑
<ij> 1 = 1

2Nq where q is the
number of nearest neighbors of each site. Although geometrical effects are no
longer included via the exchange interaction strength, they are important due
to the lattice summations. The state labels do not depend on geometry.

Including a magnetic field.

Very often we need the presence of a magnetic field. The energy term as-
sociated with an external field is simplified by assuming that each total spin
couples to the external field ~H according to

Hint( ~Si) = − ~H • γG
~Si (8.10)

This represents the fact that the magnetic moment is proportional to the orbital
moment, according to ~Mi = γG

~Si. The components of ~S parallel to ~H are the
only ones that play a role. The factors γG and 1

2~ are now included in the
strength of the field h, leading to

Eint = − ~H • ~M = −h
∑

i

σi (8.11)

Hence we define the total magnetic moment or total spin (equivalent in this
case, since we redefined the units of magnetic field by including the appropriate
factors)

M {σ1, · · · , σN} =
∑

i

σi (8.12)

Thermodynamic limit.

So far we have not specified the actual positions of the atoms. The atomic
models are valid for all values of N, but a comparison with thermodynamics is
only possible in the thermodynamic limit. If we want to study bulk properties,
we assume that N → ∞ and calculate the energy and magnetic moment per
particle. In that limit all atomic positions become equivalent if the structure
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is a monoatomic periodic lattice. We are also able to study surfaces in such a
limit by assuming that the atomic positions only fill half of space. Even in the
limit N → ∞ this still leaves us with a surface. Due to the reduced symmetry
atoms at the surface do not have the same environment as atoms far inside, and
calculations are in general harder to perform.

8.2 Basic Mean Field theory.

The easiest way to obtain an approximate solution for the thermodynamics
of almost all models is called mean field theory. In this section we discuss the
basic mean field theory in the context of the Ising model, and from this it will be
clear how to generalize this approximation for arbitrary physical models. In later
sections we extend the idea of mean field theory to obtain better approximations.

First, we need to cast the energy function 8.9) in the form of an opera-
tor. Assume that the quantum state in which atom i has spin σi is given by
|σ1, · · · , σN >. The Hamiltonian operator representing the energy of the system
and acting on the space of all possible quantum states |σ1, · · · , σN > is

H =
∑

σ1,···,σN

|σ1, · · · , σN > E {σ1, · · · , σN} < σ1, · · · , σN | (8.13)

The operator for the magnetic moment is

M =
∑

σ1,···,σN

|σ1, · · · , σN > M {σ1, · · · , σN} < σ1, · · · , σN | (8.14)

At this point we have to make a choice whether to sum over quantum states
with a given value of the total moment or to introduce a magnetic field and
sum over all states. The latter is much easier. The change is similar to what we
did when we replaced the canonical (fixed N) ensemble by the grand canonical
(fixed µ) ensemble. We will evaluate probabilities for a given temperature and
magnetic field. The thermodynamic energy function we want to get is the
magnetic Gibbs free energy

G(T, h,N) = U − TS − hM (8.15)

where M is the thermodynamic average of the magnetization density M.
The partition function to calculate is

Z(T, h,N) = Tr e−β(H−hM) (8.16)

The trace is best evaluated in the basis of eigenstates, and we have

Z(T, h, N) =
∑

σ1,···,σN

< σ1, · · · , σN |e−β(H−hM)|σ1, · · · , σN > (8.17)
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Z(T, h, N) =
∑

σ1,···,σN

eβ(J
∑

<ij> σiσj+h
∑

i σi) (8.18)

The magnetic Gibbs energy G follows from the partition function according
to

G(T, h, N) = −kBT log (Z(T, h,N)) (8.19)

The expectation value of the Hamiltonian 8.9 for a given quantum state is a
quadratic function in the variables σi. This is the source of all calculational
problems. In mean field theory we approximate this Hamiltonian by a form
that is linear in the spin-variables σi.

The spin-variables σi are pure numbers, and it will be useful to connect them
with operators representing them. We have

Szi|σ1, · · · , σN >= σi|σ1, · · · , σN > (8.20)

and

H = −J
∑

<ij>

SizSjz (8.21)

Note that these are not quite the usual spin operators, we have taken a factor
1
2~ out. The average value of the spin per site is given by

m(T, h,N) =
1
N

N∑

i=1

〈Si〉T,h (8.22)

where we have defined the thermodynamical average by

〈Si〉T,h =
1

Z(T, h, N)
Tr Sie

−β(H−hM) (8.23)

If it is obvious which type of ensemble we are using, we will drop the labels on
the average. In the remainder of this section it is understood that averages are
at a given value of the temperature T and magnetic field h. We now consider
an infinite solid and ignore surface effects. Also we assume that there is only
one type of atomic site. The spin averages are in that case independent of the
atomic position i and we have

m(T, h,N) = 〈Si〉 (8.24)

We now rewrite the energy of a given quantum state using the average of
the spin variables and deviations from average. We find

H = −J
∑

<ij>

(Siz−m)(Sjz−m)−J
∑

<ij>

Sizm−J
∑

<ij>

mSjz +J
∑

<ij>

m2 (8.25)
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This can be rewritten by using the number of nearest neighbors q for each site
and the total number N of sites.

H = −J
∑

<ij>

(Siz −m)(Sjz −m)− Jm
1
2
q
∑

i

Siz − Jm
1
2
q
∑

j

Sjz + Jm2 1
2
Nq

(8.26)
where the factors 1

2 occur because we are counting nearest neighbor bonds. For
each site we include only half of the neighbors, in agreement with the require-
ment i < j. The two terms in the middle are now combined, and we end with:

H = −J
∑

<ij>

(Siz −m)(Sjz −m)− Jmq
∑

i

Siz + Jm2 1
2
Nq (8.27)

The internal energy is the thermodynamical average of the Hamiltonian.
Hence we find

U = 〈H〉 = −J
∑

<ij>

〈(Siz −m)(Sjz −m)〉 − Jmq〈
∑

i

Siz〉+ Jm2 1
2
Nq (8.28)

U = −J
∑

<ij>

〈(Siz −m)(Sjz −m)〉 − Jm2 1
2
Nq (8.29)

The second term on the right hand side is the energy of a system where each
spin has its average value. The first term is a correction to this simple ex-
pression related to fluctuations in the spin variables. In mean field theory we
ignore these fluctuations. We assume that the fluctuations on different sites are
independent, they are uncorrelated, and write

〈(Siz −m)(Sjz −m)〉 = 〈(Siz −m)〉〈(Sjz −m)〉 = 0 (8.30)

We approximate the expression for the Hamiltonian operator by ignoring all
terms containing products of differences of the form Si −m. Hence the mean-
field Hamiltonian is

Hmf = −Jmq
∑

i

Siz + Jm2 1
2
Nq (8.31)

The name mean field (or average field) is derived from the physical interpre-
tation of this Hamiltonian. The energy of a spin at a given site i is determined
only by the average of the spins on the neighboring sites. Another way of ob-
taining the mean-field is the following. We would like to write the Hamiltonian
8.21 in a linearized form:

Hlin = −heff

∑

i

Si + H0 (8.32)
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where the functions heff and H0 are independent of the eigenvalues of the
operators S. We need a criterion to find heff . A simple physical picture of the
state of a spin Si shows all neighboring spins having their average value m, and
hence heff = mqJ as we found in 8.31. The term H0 is determined by requiring
that the energy is correct if all spins have the value m, in other words it removes
the effects of double counting. The internal energy in linearized approximation
is

〈Hlin〉 = −mqJ〈
∑

i

Si〉+ H0 (8.33)

〈Hlin〉 = −m2qJN + H0 (8.34)

and this needs to be equal to − 1
2NqJm2, which gives H0 as before.

One final remark. The basic form of mean field theory ignores correlations
between fluctuations on different sites. But we also know that fluctuations
are directly related to response functions. Therefore, we expect that response
functions in mean field theory will not be extremely accurate. Especially, we
will see errors in the results for critical exponents.

8.3 Mean Field results.

In order to proceed further we have to calculate the average spin m. We use the
mean-field Hamiltonian to do that and we find

m(T, h) =
Tr Sie

−β(Hmf−hM)

Zmf (T, h,N)
(8.35)

with

Zmf (T, h, N) = Tr e−β(Hmf−hM) (8.36)

But this cannot be done directly. The formula for m contains Hmf and
hence it depends on m. Therefore, m cannot be chosen arbitrarily, but has to
satisfy the two equations above. This is an implicit equation for m.

The partition function is easy to calculate in this approximation. We use
the basis of eigenstates and we find

e
1
2 βNqJm2

Zmf (T, h, N) =
∑

σ1=±1

· · ·
∑

σN=±1

eβ(h+mqJ)
∑N

i=1 σi =

∑
σ1=±1

· · ·
∑

σN=±1

∏

i

eβ(h+mqJ)σi =

∏

i

[ ∑
σi=±1

eβ(h+mqJ)σi

]
=
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[ ∑
σ=±1

eβ(h+mqJ)σ

]N

= 2N coshN (β(h + mqJ)) (8.37)

In a similar way we find

e
1
2 βNqJm2

Tr Ske−β(Hmf−hM) =

∑
σ1=±1

· · ·
∑

σN=±1

σkeβ(h+mqJ)
∑N

i=1 σi =

∑
σ1=±1

· · ·
∑

σN=±1

σk

∏

i

eβ(h+mqJ)σi =

∑
σk=±1

σkeβ(h+mqJ)σk

∏

i 6=k

[ ∑
σi=±1

eβ(h+mqJ)σi

]
=

∑
σk=±1

σkeβ(h+mqJ)

[ ∑
σ=±1

eβ(h+mqJ)σ

]N−1

=

2N coshN−1(β(h + mqJ)) sinh(β(h + mqJ)) (8.38)

This expression is independent of k indeed, as required. Combining the last
two formulas we find that m(T, h), the average of the spin variable, has to obey

m = tanh (β(mqJ + h)) = tanh
(

βqJ (m +
h

qJ
)
)

(8.39)

The next question we have to answer is what are the solutions for m? We
see that there are two ways to modify the nature of the solutions. We can either
change βqJ , which changes the slope of the hyperbolic tangent at the origin,
of change h

qJ , which shifts the whole curve. The magnitude of the coupling
constant J or the number of neighbors q together do only set the scales for the
temperature and the magnetic field. If we express the temperature in unit of
qJ
kB

and the magnetic field in units of qJ then the solutions for m do not depend
directly on q and J anymore. Hence we define h∗ = h

qJ and β∗ = βqJ . The
resulting equation we have to solve is

m = tanh (β∗ (m + h∗)) (8.40)

This has the form m = f(m) and a standard technique to solve such an
equation is to draw a graph. We look at the graph of y = f(m) and check where
it intersects the straight line y = m. In figure 8.1 we show the results for β∗ = 1

2
and h∗ = 2.

In this case we see that there is one solution. In general, there will always be
at least on solution, since the hyperbolic tangent stays between minus and plus
one, and the line y = m has to intersect it. If one draws a picture of the left
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Figure 8.1: β∗ = 1
2

, h∗ = 2

and right hand sides of this equation, it is easy to see that one either has one
or three solutions. In figure 8.2 we show the results for β∗ = 2 and h∗ = 0.1,
and now we see three solutions.
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m
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Figure 8.2: β∗ = 2 , h∗ = 0.1

When there is only one solution, we have found the function m(β∗, h∗) and
are able to calculate the internal energy and the partition function from. In case
there are three solutions, we need to compare the magnetic Gibbs energy for
the three solutions and find the lowest energy solution. Note that when |h∗| > 1
there is only one solution, the model system is always magnetized. In a strong
magnetic field the spins are always aligned in a ferromagnetic manner.

Spontaneous magnetic order.
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An interesting case is related to the possibility of having spontaneous mag-
netization. When there is no external field we need to solve

m = tanh (β∗ m) (8.41)

If we compare the slope of the hyperbolic tangent at the origin with the number
one, the slope of the left hand side, we see that for β∗ > 1 there are three
solutions for m. When β∗ 6 1, there is only one solution. Obviously, m = 0
is always a solution. When β∗ is only slightly larger than one, the solutions of
the previous equation can be found by expanding the hyperbolic tangent, since
in this case all solutions have values for m which are very small. Therefore we
find

m ≈ β∗m− 1
3
(β∗m)3 (8.42)

This leads to m = 0, as expected, or

m2 ≈ 3(β∗ − 1)
β∗3

≈ 3(β∗ − 1) (8.43)

If there is a non-zero solution which is very small, we need β∗ to be slightly
larger than one. Since such a small non-zero solution only occurs very close to
Tc, we find immediately that β∗c = 1. Hence for T < Tc, where Tc is defined by
β∗c = 1 or kBTc = qJ , we have a second solution that vanishes at Tc like

m ∝
√

3(β∗ − 1) =

√
3(

Tc

T
− 1) =

√
3
T

(Tc − T ) (8.44)

which gives a critical exponent β (do not confuse this β with kBT ) of 1
2 , just

as we argued in thermodynamics for mean field theory!
In order to find the thermodynamically stable state we have to compare the

free energies. From the result for the partition function we obtain

G(T, h = 0, N) = −NkBT log(2 cosh(β∗m)) +
1
2
NqJm2 (8.45)

Since m is close to zero for T near Tc the right hand side can be expanded
like

G(T, 0, N) ≈ −NkBT log(2)−NkBT log(1 +
1
2
(β∗m)2) +

1
2
NqJm2 ≈

−NkBT log 2−NkBT
1
2
(β∗m)2 +

1
2
NqJm2 =

−NkBT log 2− NqJ

2
[
kBTβ2qJ − 1

]
m2

−NkBT log 2− NqJ

2kBT
[qJ − kBT ]m2
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−NkBT log 2− NqJ

2T
[TC − T ] m2 (8.46)

Because T < Tc the coefficient in front of the m2 term is negative, and lowers
the energy. This shows that the solution with m 6= 0 has the lowest energy. The
problem is also symmetric, for h = 0 there are two possible values for m with
opposite sign.

Note that for T > Tc and hence m = 0 we have

G(T > Tc, h = 0, N) = −NkBT log(2) (8.47)

This result makes sense. The internal energy for zero moment is zero in the
mean field approximation. Also, the magnetization is zero, and hence from
G = U −TS −HM we have S = NkB log(2), which tells us that the number of
states available to the system is equal to 2N . All states are available, which is
what we would expect.

8.4 Density-matrix approach (Bragg-Williams ap-
proximation.

A second way to obtain the solutions for the Ising model is via the maximum
entropy principle. This approach might seem quite tedious at first, and it is
indeed, but it is also much easier to improve upon in a systematic fashion. This
principle states that we have to maximize

S = −kBTr [ρ log(ρ)] (8.48)

over all density matrices ρ consistent with our model. Similar to what we found
in a previous chapter for the canonical ensemble, with constraints Trρ = 1 ,
Trρ(H) = U , and Trρ(M) = M , the density matrix maximizing this expression
for the entropy is given by

ρ =
1

Tr
[
e−β(H−hM)

]e−β(H−hM) (8.49)

This gives the exact solution, and the temperature and field have to be set in
such a manner as to give U and M . The trace of the operator in 8.49 is still
hard to calculate, however.

Maximum (and minimum) principles are very powerful. Instead of varying
the entropy over all possible density matrices, we select a subset and maximize
over this subset only. This gives us an approximate density matrix and the
quality of the approximation is determined by our ability to find a good subset.
Many calculations in physics in general are based on minimum or maximum
principles.

The constraints we need are incorporated via Lagrange multipliers, and the
function we need to maximize is
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−kBTr [ρ log(ρ)]− βkB [Tr(ρH)− U ] + βkBh [Tr(ρM)−M ] + kBλ [Trρ− 1]
(8.50)

with Tr ρ = 1 , ρ = ρ† , and ρ2 6 ρ, the last inequality in an operator sense.
But we can rewrite the previous expression in the form:

−kBTr [ρ log(ρ)]−βkBTr(ρH)+βkBhTr(ρM)+kBλ [Trρ− 1]+kBβU−kBβhM
(8.51)

The operator for the Gibbs-like free energy for a magnetic problem is given by

G = H− TSen − hM = Tr(ρH) + kBTTr [ρ log(ρ)]− hTr(ρM) (8.52)

This means that we have to maximize the following expression for ρ:

− 1
T
G + kBλ [Trρ− 1] + kBβU − kBβhM (8.53)

and then choose h and T to give the correct values of U and M . In other words
we have to minimize G!!! This change is equivalent to what we saw in ther-
modynamics, where we derived minimum energy principles from the maximum
entropy principle.

Therefore, what we plan to do is to use a smaller set of density matrices and
minimize the operator form of the Gibbs energy within this set to get an upper
bound of the true thermodynamical Gibbs energy.

In our case, we will use the following approximation of the density matrix,
as defined via the matrix elements

< σ1, · · · , σN |ρ|σ′1, · · · , σ′N >= ρ1(σ1, σ
′
1)ρ2(σ2, σ

′
2) · · · ρN (σN , σ′N ) (8.54)

The functions ρi(σ, σ′) represent two by two matrices. Essentially, we de-
compose the density matrix as a direct product of N two by two matrices:

ρ = ρ1

⊗
ρ2

⊗
· · ·

⊗
ρN (8.55)

Writing the density matrix as a direct product in this way is equivalent to
ignoring correlations between different sites. The correlation is not completely
gone, of course, since the energy still connects neighboring sites.

Why does this form ignore correlations between different sites? If we use this
form to calculate the thermodynamic average of a quantity which only depends
on a single spin variable σk we find

〈f(σk)〉 =

{ ∑
σk=±1

f(σk)ρk(σk, σk)

} ∏

i 6=k

{ ∑
σi=±1

ρi(σi, σi)

}
(8.56)
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and since

1 = Tr ρ =
∏

i

{ ∑
σi=±1

ρi(σi, σi)

}
(8.57)

it follows that

〈f(σk)〉 =

∑
σk=±1 f(σk)ρk(σk, σk)∑

σk=±1 ρk(σk, σk)
(8.58)

This result is independent of the state of the spins on all other sites. There
are no correlations between the sites for expectation values.

We still have to minimize the Gibbs energy and that procedure will deter-
mine the form of ρk. Hence the nature of the system will only enter via the
thermodynamic average for the energy and entropy, and hence the density ma-
trix in this uncorrelated model depends only on these average quantities. We
expect therefore that this will give the same results as the mean field or average
field approximation. At this level the previous formulation of mean field theory
is often easier to apply, but the present formulation is an important starting
point for improving the model by including correlations in the density matrix.

For a general system the local density matrices ρi depend on the atomic site.
For an infinite solid without surfaces all sites are equivalent and all functions ρi

are identical to a simple function ρ̃. The matrix elements ρ̃(σ, σ′) have to obey
certain requirements, though.

First of all, the density matrix has trace one, Tr ρ = 1, which gives
∑

σ1,···,σN

ρ̃(σ1, σ1) · · · ρ̃(σN , σN ) = 1 (8.59)

or [Tr ρ̃]N = 1. The density matrix is Hermitian and if we consider one off
diagonal element only we have

< σ1, · · · , σ′k, · · · , σN |ρ|σ1, · · · , σk, · · · , σN >=

(< σ1, · · · , σk, · · · , σN |ρ|σ1, · · · , σ′k, · · · , σN >)∗ (8.60)

We write the density matrix as a direct product again, and sum over all values
σi with i 6= k. This gives

[Tr ρ̃]N−1
< σ′k|ρ̃|σk >=

(
[Tr ρ̃]N−1

< σk|ρ̃|σ′k >
)∗

(8.61)

Now we use [Tr ρ̃]N = 1 and get

< σ′k|ρ̃|σk >

Tr ρ̃
=

(
< σk|ρ̃|σ′k >

Tr ρ̃

)∗
(8.62)

The last equation means that the operator ρ̃
Tr ρ̃ is Hermitian with trace one,

and therefore has real eigenvalues. Call the eigenvalues λ1 and λ2 and the
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eigenvectors e1(σ) and e2(σ). We have λ1 + λ2 = 1. The eigen equations are
now:

ρ̃~em = λjm [Tr ρ̃]~em (8.63)

The last result is interesting. It implies that the trace of the operator is
a simple factor, which does not alter the eigenstates, and does not affect the
ratio of probabilities for spin up and down. Also, the resulting factor in the
complete density matrix ρ is [Tr ρ̃]N . First of all, this trace is equal to one, and
hence the trace of ρ̃ has to be a phase factor. Second, the phase factor is not
important, since it does not affect the total density matrix. Therefore, we can
take Tr ρ̃ = 1.

We also require that the total density matrix ρ is positive definite, meaning
that

< Ψ|ρ|Ψ >>< Ψ|ρ2|Ψ > (8.64)

for all states |Ψ >. Suppose the components of |Ψ > are given by

< σ1, · · · , σN |Ψ >=
∏

i

en(i)(σi) (8.65)

where the function n(i) gives either one or two. We have

< Ψ|ρ|Ψ >= λP
1 λN−P

2 [Tr ρ̃]N = λP
1 λN−P

2 (8.66)

where P is the number of times n(i) is equal to one, and we used the fact that
Tr ρ = 1. Similarly, we have

< Ψ|ρ2|Ψ >= λ2P
1 λ2N−2P

2 [Tr ρ̃]2N = λ2P
1 λ2N−2P

2 (8.67)

As a result we have λP
1 λN−P

2 > λ2P
1 λ2N−2P

2 > 0 for all values of P . Taking
P = N gives λN

1 > λ2N
1 which means (with λ1 being real) that λN 6 1. This

implies λ1 6 1, and since λ1 + λ2 = 1 we have λ2 > 0. Similarly, λ2 6 1 and
λ1 > 0. Therefore, ρ̃ is positive definite with trace one.

The most general form of a matrix ρ̃ is

ρ̃ =
(

1
2 (1 + m) a∗

a 1
2 (1−m)

)
(8.68)

Here m is again the average value of the spin variable, m =
∑

σ σρ̃(σ, σ). Also,
the trace of this matrix is one. The number a is complex. Therefore, we are
left with three free parameters only! The number is three since a is complex
and a combination of two independent real numbers. Note that at this moment
m is still a parameter, but it will be the average magnetic moment after we
completed the minimization.

We started from the following minimization:

G(h, T ) = min
ρ

Tr [ρH− ρhM+ kBTρ log(ρ)] (8.69)
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but now restrict ourselves to density matrices ρ = (ρ̃)N , where the power means
a direct product and where we use the three parameters a and m as defined
before. This leads to

G(h, T ) 6 min
m,a

Tr
[
(ρ̃)NH− (ρ̃)NhM+ kBT (ρ̃)N log((ρ̃)N )

]
(8.70)

and this procedure gives an upper bound to the energy. Note that this does not
give any bounds on derivatives. But we know that derivatives are monotonous,
and hence we cannot have large oscillations in them. Therefore, derivatives have
errors similar to the errors in the free energy!

The energy U −Mh is calculated from Tr (H− hM)ρ, which becomes

U −Mh =
∑
σ1

· · ·
∑
σN

ρ̃(σ1, σ1) · · · ρ̃(σN , σN )


−J

∑

<ij>

σiσj − h
∑

i

σi


 (8.71)

A given variable σj occurs only in a linear fashion in this summation, and
hence the sums over the spin-variables either give a factor one or m, because∑

σ ρ̃(σ, σ) = 1 and
∑

σ σρ̃(σ, σ) = m. This leads to

U −Mh = −1
2
JNqm2 − hNm (8.72)

as expected. This expression is independent of the values of the complex number
a.

The harder task is to evaluate the entropy, because it has the logarithm of
a matrix in the expression.

The entropy can be obtained from

S = −kB

∑
σ1,···,σN

∑

σ′1,···,σ′N
< σ1, · · · , σN |ρ|σ′1, · · · , σ′N >< σ′1, · · · , σ′N | log ρ|σ1, · · · , σN >

(8.73)
So how does one calculate the logarithm of a matrix? The final result is not

too surprising, it looks like log(xy) = log(x) + log(y), but here we work with
matrices in stead of numbers, so we have to be a little careful. In our case we
define N additional matrices related to ρ̃ by

< σ1, · · · , σN |Rn|σ′1, · · · , σ′N >= δσ1,σ′1δσ2,σ′2 · · · ρ̃(σn, σn) · · · (8.74)

which is diagonal except for the n-th spin variable. Hence ρ = R1R2 · · ·RN

where all the matrices are of rank 2N . These matrices commute, since the off
diagonal elements occur on different blocks that are not connected. So we have
[Ri, Rj ] = 0.

The exponent of a matrix is defined via a power-series as usual, eA =∑
n

1
n!A

n, and the logarithm is the inverse of the exponential, eA = B ⇒
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A = log(B). We first look at the logarithm of Rn, Tn = log(Rn). The operators
Rn have a simple form, they are Hermitian, and the eigenvectors are simple.
The only states that can be mixed are states with different values of σn. But
vectors that have different values of σi with i 6= n are not mixed, and all eigen-
vectors of Rn have values for σi either +1 or −1. Since the eigenvectors of Tn

are identical to the eigenvectors of Rn, the same is true for Tn. This implies
that we can write

< σ1, · · · , σN |Tn|σ′1, · · · , σ′N >= δσ1,σ′1δσ2,σ′2 · · · τ̃(σn, σn) · · · (8.75)

The only part of the space that is mixed corresponds to σn, but since the
eigenvectors of both operators are teh same, we need to have

τ̃ = log(ρ̃) (8.76)

Finally, because [Ri, Rj ] = 0 we have log(RiRj) = log(Ri) log(Rj). This
gives us that log(ρ) =

∑
i log(Ti). Hence

< σ1, · · · , σN | log(ρ)|σ′1, · · · , σ′N >=
N∑

n=1

δσ1,σ′1δσ2,σ′2 · · · 〈log(ρ̃)〉 (σn, σn) · · ·
(8.77)

and

Tr ρ log(ρ) =
N∑

n=1

∑
σ1

< σ1|ρ̃|σ1 >
∑
σ2

< σ2|ρ̃|σ2 > · · ·
∑

σn,σ′n

< σn|ρ̃|σ′n >< σ′n| log(ρ̃)|σn > · · ·

(8.78)
The trace of the operators is equal to one, so all those sums in the equation are
replaced by one. This leaves

Tr ρ log(ρ) =
N∑

n=1

∑

σn,σ′n

< σn|ρ̃|σ′n >< σ′n| log(ρ̃)|σn >= NTr ρ̃ log(ρ̃) (8.79)

and we have

S = −kBNTr ρ̃ log(ρ̃) (8.80)

as expected, since all sites are equivalent and contributions from different sites
are not mixed. Nevertheless, it was important to follow the mathematical deriva-
tion to make sure that our intuitive expectation was indeed correct.

Next we need to minimize the free energy

G(h, T ) 6 min
m,a

[
−1

2
JNqm2 − hNm + NkBTTr ρ̃ log(ρ̃)

]
(8.81)
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Since the first parts are independent of a we can write this as

G(h, T ) 6 min
m

[
−1

2
JNqm2 − hNm + NkBT min

a
{Tr ρ̃ log(ρ̃)}

]
(8.82)

and we find the value of a from

min
a
{Tr ρ̃ log(ρ̃)} (8.83)

This number a is now determined by requiring

d

da
Tr ρ̃ log(ρ̃) = 0 (8.84)

This expression is similar to the one we discussed in the chapter on operator
methods, and here, too, we can write

d

da
Tr ρ̃ log(ρ̃) = Tr

dρ̃

da
log(ρ̃) + Tr

dρ̃

da
(8.85)

Since Tr ρ̃ has to remain equal to one, the second term is zero. The first term
is [log ρ̃]12. Similarly, we find that the derivative with respect to a∗ is [log ρ̃]21.
In order to vary a and a∗ we can either vary the real and imaginary part of a
independently, but also can vary a and a∗ independently. Both procedures give

[log ρ̃]12 = [log ρ̃]21 = 0 (8.86)

If log ρ̃ is diagonal, ρ̃ must be diagonal and hence a = 0. This follows from
A = elog(A) =

∑
1
n! [log(A)]n, and because log A is diagonal, all powers of log A

are diagonal. Therefore we find that

ρ̃ =
[

1
2 (1 + m) 0

0 1
2 (1−m)

]
(8.87)

Note that ρ̃ is Hermitian with trace one, and that the condition of being positive
definite requires |m| 6 1, which is also expected.

There is one more detail, however. We found an extremum for the expression
Tr ρ̃ log(ρ̃), but is it a minimum? Since there is only one extremum, independent
of the value of m, we can look at one other easy case and check if the results
are smaller or larger. Let us consider a real, positive, and small, and m = 0.

ρ̃ =
[

1
2 a
a 1

2

]
(8.88)

Perturbation theory tells us that the eigenvalues of this matrix are 1
2 ±a. Hence

the trace is now equal to T (a) = ( 1
2 +a) log( 1

2 +a)+( 1
2−a) log( 1

2−a). If we take
the derivative d

da of this expression we find dT
da = log( 1

2 + a)− log( 1
2 − a). This

expression is indeed zero for a = 0, as needed, and is also positive for a > 0,as
can be seen after combining the logarithms to dT

da = log( 1+2a
1−2a ). Hence in this
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particular direction our extremum is a minimum, and since we only have one
extremum, it is a minimum no matter how we make changes.

Finally, we find that the entropy is

S = −NkB

(
1 + m

2
log(

1 + m

2
) +

1−m

2
log(

1−m

2
)
)

(8.89)

At this point we still have m as an unknown parameter. The thermodynamic
variables which are specified are h, T, and N. The minimization needed to get
to the free energy is now

G(h, T ) 6 min
m

[
−1

2
JNqm2 − hNm + NkBT

(
1 + m

2
log(

1 + m

2
) +

1−m

2
log(

1−m

2
)
)]

(8.90)
where m is restricted between −1 and +1. The value of m which minimizes this
expression is then used to construct ρ̃ and hence ρ. Once we have the density
matrix ρ, we are able to calculate all thermodynamic quantities of interest.

The expression above looks like Landau theory, and, of course, it is. Landau
theory has indeed a very good microscopic basis. We can use any parametriza-
tion of the density matrix, and the Gibbs like free energy has to be the minimum
as a function of these parameters. The general form of the energy then follows,
and for a magnetic model takes the form above.

The slope of G(T, h,N ; m) as a function of m is given by

∂G

∂m
(T, h, N ; m) = −NqJm−Nh +

1
2
NkBT log

1 + m

1−m
(8.91)

At m = −1 the slope is −∞ and at m = +1 the slope is +∞. Hence
G(T, h, N ;m) always has at least one minimum as a function of m for a value
of m between −1 and +1. The value of m is found by equating the derivative
of G to zero, which yields

mqJ + h

kBT
= log

√
1 + m

1−m
(8.92)

It is not hard to show that this is equivalent to m = tanhβ(qJm + h). If we

have y = log
√

1+m
1−m we have (1−m)e2y = 1 + m, and e2y − 1 = m(e2y + 1), or

ey − e−y = m(ey + e−y).
If there is only one solution, this has to be the minimum value of G according

to our observation of the values of the derivatives at the end-points. Since the
derivative of G with respect to m is a continuous function of m we are also
able to deduce that there has to be an odd number of extrema between −1 and
+1 due to the values of the slopes at the end-points. They have to be ordered
minimum..maximum..minimum etc. Of course, one can always check this by
calculating the second derivative

∂2G

∂m2
= −NqJ +

NkBT

1−m2
(8.93)
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The results of this section are identical to the mean-field results. In this
section we derived the mean-field results via the density matrix and approxi-
mated the density matrix by ignoring all correlations. This is another way of
understanding how mean-field theory ignores correlations.

The form of the function G is very similar to forms we used in our treatment
of Landau theory in thermodynamics. We can show this in more detail by
expanding the function in powers of m for values of m near zero. Using

(1+m) log(1+m) = (1+m)
∞∑

k=1

(−1)k+1

k
mk =

∞∑

k=1

(−1)k+1

k
mk+

∞∑

k=1

(−1)k+1

k
mk+1

(8.94)
and the fact that we have to add the same expression with negative m shows
that even exponents are the only ones to survive. Hence

(1+m) log(1+m)+(1−m) log(1−m) = 2
∞∑

k=2,even

(−1)k+1

k
mk+2

∞∑

k=2,even

(−1)k

k − 1
mk

(8.95)
or

(1 + m) log(1 + m) + (1−m) log(1−m) = 2
∞∑

k=2,even

1
k(k − 1)

mk (8.96)

This is an even function of m as needed, and we have

G(h, T, N ;m) = −1
2
JNqm2 − hNm + NkBT

(
− log(2) +

1
2
m2 +

1
12

m4

)

(8.97)
or

1
N

G(h, T,N ; m) = [−hm] + [−NkBT log(2)] +
1
2
[kBT − Jq]m2 +

1
4
[
kBT

3
]m4

(8.98)
This is exactly the model for a second order phase transition that we dis-

cussed in Thermodynamics. Hence the Ising model in the mean field approx-
imation shows a second order phase transition at a temperature Tc given by
kBTc = qJ . The critical exponent β is therefore 1

2 (Note that β is in statistical
mechanics used for 1

kBT , but also denotes a critical exponent. Do not confuse
these two!). The relation between the macroscopic Landau theory and statistical
mechanics is very important, it shows how the parameters in a thermodynami-
cal model can be derived from a statistical mechanical theory on a microscopic
level.
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In the previous sections we have derived the same result in two different
ways, and therefore have shown that these two approximations are equivalent.
In Mean Field Theory we replace the quadratic coupling terms in the Hamil-
tonian by the product of an average and a variable. This is equivalent to coupling
each spin to the average field due to the neighbors. In the Bragg-Williams
approximation we replace the density matrix by a form that does not contain
coupling between neighboring sites. As a result, in the Hamiltonian again the
average field of the neighbors plays a role only.

8.5 Critical temperature in different dimensions.

In the mean-field solution of the Ising model the critical temperature does not
explicitly depend on the dimensionality of the problem. Indirectly it does, of
course, because the possible values of q depend on the number of dimensions.
For a mono-atomic, periodic lattice in one dimension q has to be two, in two
dimensions q can be two, four, or six, and in three dimensions q can be two,
four, six, eight, or twelve. Hence the higher the number of dimensions, the
larger the critical temperature can be. For closed packed systems the number
of neighbors is maximal, and the critical temperature would increase according
to the pattern 2:6:12 going from one to three dimensions. This is also true
in general. When the number of neighbors increases, the total strength of the
interactions driving an ordered state increases and the ordered state can persist
up to a higher temperature.

The mean-field solution of the Ising model is only an approximation. In
general, the errors in the mean-field solutions become larger when the number
of dimensions decreases. In one dimension, for example, there are no phase
transitions in the Ising model! What causes the error in mean-field theory?
In essence, we did something dangerous by interchanging two limits. We first
assumed that N →∞ in order to deduce that 〈Si〉 is the same for all positions
i. Or that ρ̃i is independent of i. Then we used this common value to solve the
equations for finite values of N. The results made of this procedure made sense
in the thermodynamic limit, since m did not depend on N. The error is actually
in the first step. We have to solve the whole problem at finite N and calculate
mi(N, T ). In this expression we should take the limit N →∞. The results will
be different in that case. We cannot interchange these limits!

There is an old argument, due to Landau (who else?), that the Ising chain
does not show a phase transition. Consider a finite chain of N sites, numbered
one through N sequentially. Assume that h = 0. There are two completely
ordered states, either all spins are up or down. Next we consider all states
which include a so-called Bloch wall. The first m spins have one direction, while
the remaining N −m spins have the opposite direction. The number of these
states is 2(N−1). The energy of a completely ordered chain is E0 = −J(N−1).
The energy of a Bloch wall state is different only due to the contribution of the
two spin variables at opposite sites of the Bloch wall. Therefore the energy of
a Bloch wall state is −J(N − 2) + J = E0 + 2J . At a fixed temperature and at
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h = 0 the difference in Gibbs free energy, ∆G, is therefore:

∆G = 2J − T∆S = 2J − kBT (log 2(N − 1)− log(2)) = 2J − kBT log(N − 1)
(8.99)

For every value of the temperature not equal to zero, this free energy differ-
ence becomes negative in the thermodynamic limit N →∞. Hence at a non-zero
temperature the completely ordered state is not stable in the thermodynamic
limit and the Ising chain should not show a phase transition in the traditional
sense, even though at T = 0 the system is stable in the completely ordered
state. The temperature T = 0 is a singularity, but for a real phase transition we
require that it must be possible to define values of the temperature below Tc.

We will now look further into the physical explanation of this phenomenon.
Consider a finite chain with all spins up at non-zero temperature. Each spin is
able to fluctuate, and spins that are not at the end have to pay an energy 4J
because they break two bonds by switching. The probability for this to happen
is e−4Jβ . It is far more likely for a spin at the end to switch, since the energy
cost is only 2J and hence the probability is e−2Jβ .

How long does it take for such a defect to be introduced? Due to thermal
effects (in real systems most likely related to phonons, but any small outside
perturbation will do) the spin tries to change. We can represent these effects
by an attempt frequency A. The time scale typical for the introduction of such
defects, tintro, then has to obey:

1 = Ae−2Jβtintro (8.100)

and we say that every tintro seconds a new defect is introduced.
What is the lifetime of such a defect? The easiest way is to think about it in

terms of the motion of a Bloch wall. Such motion does NOT cost energy, since
the energy is directly associated with the two sites defining the Bloch wall, and
no matter where it is the energy is the same 2J . Of course, at the end points
the Bloch wall can disappear, with a gain of energy 2J .

The motion of a Bloch wall can be represented by a random walk, since
at each stage the probability of moving to the left is equal to the probability
of moving to the right. We define thop to be the average time between hops.
This is again a thermal effect, and the hopping time is the inverse of a different
attempt frequency, A′thop = 1, where there is no Boltzmann factor. We need
some outside mechanism to cause these hops. They are most likely coupled to
the same heat bath which drives the spin flips, but the coupling strength is
different because it is a different mechanism. Since the motion of the Bloch wall
is a random walk, the average distance covered in lattice spacings in a time t is√

t
thop

. The time it takes for a Bloch wall to move through the chain is therefore
found by setting this expression equal to N , and we have

tlife = thopN
2 (8.101)
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We can now distinguish two cases. If tlife À tintro we find at each moment
many Bloch walls in the system. This means that the system looks like it is not
ordered. On the other hand, if tlife ¿ tintro most of the time there are no Bloch
walls in the system, and the chain is fluctuating back and forth between two
completely ordered states, one with all spins up and one with all spins down.

In both cases we have for the time average of a spin

〈σi〉 = lim
τ→∞

1
τ

∫ τ

0

σi(t)dt (8.102)

which is zero in both case. Note that we always need τ À tlife, tintro.
What are values we expect for realistic systems. If we assume that attempts

are caused by phonons,the attempt frequencies for both creation and hopping
are of order 1012 s−1. This means that

tintro

tlife
≈ A−1e2Jβ

A−1N2
(8.103)

and with N = 108 as typical for a 1 cm chain and J = 1 meV as a typical spin
energy, we have tintro ≈ tlife for T ≈ 1 K. But this temperature depends on the
size of the system. At high temperatures the shorter time is the introduction
time. We always see many domain walls. This is the normal state of the system.
If we go to lower temperatures this picture should remain the same, but due
to the finite length of the chain we see a switch in behavior. Below a certain
temperature the chain at a given time is always uniformly magnetized, but
over time it switches. The temperature at which this change of behavior takes
place depends on the length of the chain. This is an example of a finite size
effect. For large systems finite size effects take place at very low temperatures,
see example numbers above. For small samples this can be at much higher
temperatures!

In the previous discussion we have three limits to worry about. In order
for the averages to be the same, 〈σ〉time = 〈σ〉ensemble, we need τ → ∞. We
are interested in low temperatures, or the limit T → 0. Finally, we have the
thermodynamic limit N → ∞. Since we need τ À tlife = thopN

2 we see
that we need to take the limit τ → ∞ before the thermodynamic limit. Also,
because τ À tintro = A−1e2Jβ we need to take the limit τ →∞ before the limit
T → 0. Form our discussion it is clear that limτ→∞〈σ〉τ = 0. Hence we have
limT→0〈σ〉∞ = 0 and this remains zero in the TD limit. The one dimensional
Ising chain is never ordered!

Calculations at T = 0 do not make sense. At T = 0 we have tintro = ∞ and
we always have τ < tintro. That violates the ergodic theorem. So, even though
people do calculations at T = 0, one has to argue carefully if it makes sense.
That is what we did for the system of Fermions, for example.

After taking the limit τ → ∞, what does the system look like? If we now
take T → 0 we find a system that is most of the time completely ordered, but
once in a while flips. The net magnetization is zero. Therefore, the real T = 0
ground state of a finite system is a system that is ordered most of the time,



180 CHAPTER 8. MEAN FIELD THEORY: CRITICAL TEMPERATURE.

but sometimes flips. A bar magnet will switch poles once in a while (but don’t
wait for it to happen, folks). If we would take the thermodynamic limit first,
the ground state of the system would always be disordered! This is the wrong
picture of the ground state with zero magnetization. On the other hand, if we
take a system at a small non-zero temperature, the thermodynamic limit then
implies that the equilibrium state of the system is a disordered state. Now the
spatial and temporal averages of variables are the same. But at T = 0 they are
not, and the point T = 0 is a singularity for the one dimensional Ising chain.

Realistic systems have finite values of N and non-zero values of T . Keep
this in mind, and watch out for sample size dependent behavior near phase
transitions. Near a phase transition the correlation length becomes larger than
the system size, just as in our example of the one dimensional Ising chain. Near
a phase transition we have to look carefully at the thermodynamic limit and
scale out finite size effects, using appropriate scaling laws.

The same argument can be applied in two dimensions. Assume that the spins
are arranged on a square of L × L sites. Consider all Bloch wall states which
divide the sample into two parts, each of which is connected and contains at
least one surface spin. The average length of the Bloch wall LW is proportional
to L, LW = cL. The way we defined the Bloch wall does not allow for fractal
dimensions, because we have discrete building blocks, and finite steps along the
wall.

The number of possible walls depends on the number of neighbors of each
site. In first approximation it will depend on L in the form 2LbLW . In this case b
is the average number of choices we have for a wall to continue at a given point.
For example, on a square lattice we expect b to be between two and three. At
each site the next point in the Bloch wall can either go right, straight, or left.
This would mean three choices for each link in the wall. Since we have to avoid
wall crossings, the actual value will be lower. The pre-factor 2L is due to the
fact that we have L possible starting points at a given side, and we can start at
two sides. The increase in energy due to the wall will be LW 2J , because each
element of the wall breaks a bond. Hence we have

∆G = 2JLW − kBT log(2[2LbLW ]) + kBT log(2) (8.104)

where we included a factor two because we can go spin up to down or down to
up. This gives

∆G = 2JLW − kBT log(bLW )− kBT log(2[2L]) + kBT log(2) (8.105)

In the limit L →∞ the last two terms are not important and we see that

∆G = LW (2J − kBT log(b)) (8.106)

Therefore the ordered state is stable against the thermal introduction of Bloch
walls if kBT log(b) < 2J . This gives an estimate of



8.6. BETHE APPROXIMATION. 181

kBTc =
2J

log(b)
(8.107)

The mean field results for a square lattice is kBTmf
c = 4J ; if b > 1.6 the

Landau estimate of Tc is below the mean-field result. The exact result for a
two-dimensional square Ising lattice is kBTc = 2.27J , or b ≈ 2.4. This is a very
reasonable value for b considering our discussion on the relation between the
parameter b and choices of continuing a Bloch wall. The largest value of b we
can have is three, which would give kBTc = 1.8J , and this gives a lower limit
on calculations for Tc.

8.6 Bethe approximation.

The next question is: how can we improve the mean-field results. In the mean
field approximation we do not have any information on the collective behavior
of two neighboring spins. We need that information, and want to find ways to
obtain that information. One possibility is via the density matrices. If we intro-
duce some correlation in the approximate density matrix, we will obtain better
results. Mathematically, this is a rigorous procedure, and can be performed
easily on a computer.

A simple model of introducing correlations is the Bethe approximation,
which does not introduce density matrices explicitly. The basic idea of the
Bethe approximation is the following. Consider a cluster of atoms. The in-
teractions between spins in this cluster are taken into account exactly, but the
interactions with the environment are treated in a mean field manner.

The basic philosophy of the mean field approximation was the following. The
energy at a given site depends on the effects of the neighboring sites through
some averaged additional magnetic field:

Emf (σ0) = −(h + h′)σ0 + f(h′) (8.108)

where h is the regular magnetic field, and h′ is the additional field. The term
f(h′) has to be introduced to avoid double counting of bonds. At the central
site all bonds to neighbors are counted, and if we multiply by N that means
that we would count the effect of each bond twice. We determine h′ by requiring
translational symmetry, 〈σ0〉 = m, which leads to m = tanh(β(h + h′)). We
need an additional condition to relate h′ and m and make the obvious choice
h′ = qJm.

How can we improve the mean field result? If we want to describe bonds
with neighbors exactly, we need to consider a cluster of atoms. All sites in the
cluster are treated exactly. There is still an outside of the cluster, and that
outside will be represented by some effective field. In this way we do describe
correlations between spins in the cluster, and obtain more information that we
had before. But since the outside is still represented by an average field, we
expect that some elements of the mean field theory might still survive. We do
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expect that if we take the limit of an infinite cluster we might be able to get
the exact solution, as long as we do take limits in the appropriate order.

In our case we have short range (nearest neighbor) interactions only. So we
would expect rapid convergence with cluster size. But that is not necessarily
true, since near a phase transition the correlation length becomes infinitely large.
The cluster we consider here consists of a central atom and its q neighbors.
This is the approach taken by Bethe. Because of symmetry we assume that all
neighboring sites are equivalent. We label the central spin 0 and the neighbors
1,2,..,q. The energy of this cluster is

Ec(σ0, · · · , σq) = −Jσ0

q∑

i=1

σi − h

q∑

i=0

σi − h′
q∑

i=1

σi + f(h′) (8.109)

The last term represents the interactions with the environment. We assume that
the environment is in some average thermodynamic state and that the effects of
the environment on the outer spins are noticeable through an effective magnetic
field h′ acting on the surface of the cluster. The average field due to the outside
acts only on the atoms that are in contact with the outside. Our result can be
generalized to larger and non-symmetric clusters, which makes the mathematics
much more complicated. For example, it would introduce effective fields that
are site specific. In our case we use the same effective field h′ on all neighbors,
since the cluster is symmetric.

For this cluster we now have to impose translational symmetry, and we need
〈σi〉 = 〈σ0〉. This gives an equation which determines the value of h′. We did
already make one choice here, and we assumed that the effective field on the
central atom is zero. That makes sense. If we make the cluster larger, however,
we have to introduce an effective field for each shell around the center, and
we get an equation equation magnetic moments for each shell, and can again
determine all fields. Only the central effective field can be set equal to zero! An
individual atom in the nearest neighbor shell is not at a symmetric position with
respect to the surface of the cluster, and hence not equivalent to the central cell.
It therefore needs an effective field.

Next, we need to calculate the partition function. In order to do so, we drop
the term f(h′) in the energy, since it will give a factor in the partition function
that does not depend on the values of σ and hence does not influence the spin
averages. We do need it at the end again, however, to calculate the energy. The
partition function for the cluster is

Zc =
∑

{σ0,···,σq}
e−βEc(σ0,···,σq) (8.110)

The derivation is a bit tedious. First we introduce the energy formula and
separate the sum on the central spin from the others.

Zc =
∑

{σ1,···,σq}

∑
σ0

eβJσ0
∑q

i=1 σieβh
∑q

i=0 σieβh′
∑q

i=1 σi (8.111)
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Next, we perform the sum over the central spin

Zc =
∑

{σ1,···,σq}

[
eβJ

∑q
i=1 σieβheβ(h+h′)

∑q
i=1 σi + e−βJ

∑q
i=1 σie−βheβ(h+h′)

∑q
i=1 σi

]

(8.112)

Zc =
∑

{σ1,···,σq}

[
eβh

q∏

i=1

eβ(J+h+h′)σi + e−βh

q∏

i=1

eβ(−J+h+h′)σi

]
(8.113)

The sums and products can now be interchanged, since
∑

x1,x2,··· f(x1)f(x2) · · · =
[
∑

x f(x)]N . This leads to

Zc = eβh[2 cosh(β(J + h + h′))]q + e−βh[2 cosh(β(−J + h + h′))]q (8.114)

The spin averages are calculated from the expressions

〈σ0〉 =
1
Zc

∑

{σ0,···,σq}
σ0e

−βEc(σ0,···,σq) =
S0

Zc
(8.115)

and

〈σj〉 =
1
Zc

∑

{σ0,···,σq}
σje

−βEc(σ0,···,σq) =
Sj

Zc
(8.116)

The additional sums are not that hard to evaluate once we have done the par-
tition function.

S0 =
∑

{σ1,···,σq}

∑
σ0

σ0e
βJσ0

∑q
i=1 σieβh

∑q
i=0 σieβh′

∑q
i=1 σi (8.117)

S0 =
∑

{σ1,···,σq}

[
eβJ

∑q
i=1 σieβheβ(h+h′)

∑q
i=1 σi − e−βJ

∑q
i=1 σie−βheβ(h+h′)

∑q
i=1 σi

]

(8.118)

S0 =
∑

{σ1,···,σq}

[
eβh

q∏

i=1

eβ(J+h+h′)σi − e−βh

q∏

i=1

eβ(−J+h+h′)σi

]
(8.119)

S0 = eβh[2 cosh(β(J + h + h′))]q − e−βh[2 cosh(β(−J + h + h′))]q (8.120)

and
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Sj =
∑

{σ1,···,σq}

∑
σ0

σje
βJσ0

∑q
i=1 σieβh

∑q
i=0 σieβh′

∑q
i=1 σi (8.121)

Sj =
∑

{σ1,···,σq}

[
σje

βJ
∑q

i=1 σieβheβ(h+h′)
∑q

i=1 σi + σje
−βJ

∑q
i=1 σie−βheβ(h+h′)

∑q
i=1 σi

]

(8.122)

Sj =
∑

{σ1,···,σq}

[
eβhσj

q∏

i=1

eβ(J+h+h′)σi + e−βhσj

q∏

i=1

eβ(−J+h+h′)σi

]
(8.123)

Sj = eβh[2 cosh(β(J + h + h′))]q−1[2 sinh(β(J + h + h′))]+

e−βh[2 cosh(β(−J + h + h′))]q−1[2 sinh(β(−J + h + h′))] (8.124)

The last expression is independent of j, as expected.
The value for h′ is determined by requiring that the average spin is the same

everywhere, or

m = 〈σ0〉 = 〈σj〉 (8.125)

which leads to S0 = Sj or

eβh[2 cosh(β(J + h + h′))]q − e−βh[2 cosh(β(−J + h + h′))]q =

eβh[2 cosh(β(J + h + h′))]q−1[2 sinh(β(J + h + h′))]+

e−βh[2 cosh(β(−J + h + h′))]q−1[2 sinh(β(−J + h + h′))] (8.126)

or

eβh[cosh(β(J + h + h′))]q−1 [cosh(β(J + h + h′))− sinh(β(J + h + h′))] =

e−βh[cosh(β(−J + h + h′))]q−1 [cosh(β(J − h− h′))− sinh(β(J − h− h′))]
(8.127)

which leads to

eβh[cosh(β(J + h + h′))]q−1
[
e−β(J+h+h′)

]
=
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e−βh[cosh(β(−J + h + h′))]q−1
[
e−β(J−h−h′)

]
(8.128)

or

cosh(β(J + h + h′))
cosh(β(J − h− h′))

= e
2

q−1 βh′ (8.129)

The self-consistency equations can be solved numerically. The interesting
question, as usual, pertains to spontaneous magnetic order. Hence we now
focus on the case h = 0. A trivial solution is h′ = 0. This gives S0 = 0 and
hence m = 0, and corresponds to a non-magnetic state.

In order to see if there are other solutions one can consider both sides of
8.129 as a function of h′. The right hand side is a simple exponentially increasing
function, which has a positive curvature. The left hand side is also an increasing
function, as can be seen from

∂

∂h′
cosh(β(J + h′))
cosh(β(J − h′))

=

β
sinh(β(J + h′)) cosh(β(J − h′)) + cosh(β(J + h′)) sinh(β(J − h′))

cosh2(β(J − h′))
=

β
sinh(2βJ)

cosh2(β(J − h′))
(8.130)

This is positive indeed. Since the hyperbolic cosine is minimal at zero, we
see that this derivative is maximal for h′ = J . Hence the left hand side of
8.129 is one for h′ = 0, increases with a positive curvature until h′ = J , and
then increases with a negative curvature until it approaches e2βJ in the limit
h′ →∞. Plots for two cases are shown in the following figures.

2.5

x

3210−1−2−3

y

10.0

7.5

5.0

0.0

Figure 8.3: β = 1 , J = 1 , q = 3
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Figure 8.4: β = 2 , J = 1 , q = 3

If the slope of the left hand side of 8.129 at h′ = 0 is larger than the slope
of the exponent, there has to be at least one intersection of the two curves for
some positive value of h′. Hence if

β
sinh(2βJ)
cosh2(βJ)

>
2β

q − 1
(8.131)

or

tanh(βJ) >
1

q − 1
(8.132)

there is a solution of 8.129 with a value of h′ > 0. What happens if the slope
of the left hand side is smaller? One has to look at the curvatures. It turns out
that there are no solutions in that case. The condition for more solutions will
always happen if q > 2, since for small values of the temperature the hyperbolic
tangent approaches the value one. For q = 2, however, there is no solution.
Hence the one dimensional Ising chain in the Bethe approximation does not
show a phase transition. But the point T = 0 is still special, since in the limit
the equation is obeyed.

The critical temperature in the Bethe approximation is therefore given by

kBTc =
J

coth−1(q − 1)
(8.133)

which can be compared to the mean field result of kBTc = qJ . For a two-
dimensional square lattice q = 4, and we find kBTc = 2.885J . This is much
closer to the exact answer 2.269J than the mean field result 4J . The Bethe
approximation greatly improves the estimates of the critical temperature.

We can solve coth(βJ) = q − 1 using

eβJ + e−βJ

eβJ − e−βJ
= q − 1 (8.134)
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eβJ (2− q) = e−βJ (−q) (8.135)

2βJ = log(
q

q − 2
) (8.136)

which leads to

kBTc = J
2

log( q
q−2 )

(8.137)

In the limit q À 1 we have log( q
q−2 ) ≈ log(1 + 2

q ) ≈ 2
q and hence kBTc ≈ qJ

like in mean field. The mean field results is best when the number of neighbors
is large, which is certainly true in high dimensional systems. As we saw in
Thermodynamics, mean field theory is exact for high dimensions.

The final, important, question is the following. When there is a solution
with a non-zero value of h′, does this solution have the lowest energy? Now we
need to address the question of finding f(h′). The energy of the cluster is given
by

〈Ec〉 = −Jq〈σ0σj〉 − h(q + 1)m− h′m + f(h′) (8.138)

and the correlation function 〈σ0σj〉 follows from

〈σ0σj〉 =
1
Zc

∑

{σ0,···,σq}
σ0σje

−βEc(σ0,···,σq) =
S0j

Zc
(8.139)

Following the calculation for Sj we find that

S0j = eβh[2 cosh(β(J + h + h′))]q−1[2 sinh(β(J + h + h′))]−

e−βh[2 cosh(β(−J + h + h′))]q−1[2 sinh(β(−J + h + h′))] (8.140)

where the only difference with Sj is the minus sign in front of the second term.
So here we see another advantage of the Bethe approximation, we do have an
estimate for the correlation function.

The value of f(h′) can be determined by considering a situation where all
spins are equal to m and are uncorrelated, in which case we know the energy.
This is too tedious, though. But if we think in terms of Landau theory and
consider h′ to be a parameter in the energy expression, we can deduce that with
three solutions for h′ the order has to be minimum-maximum-minimum, and
hence the h′ = 0 solution, which is always the middle one, has to be a maximum.
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8.7 Problems for chapter 8

Problem 1.

A model of a binary alloy can be constructed similar to an Ising model.
Assume that the possible atomic sites i are fixed and that the actual atom on
site i is either type A or type B. The effects of the chemical bond extend only
to nearest neighbors. The energy of an AA-bond is εAA, of an AB-bond εAB ,
and of a BB-bond εBB . The parameter ε = 1

2εAA + 1
2εBB − εAB is useful. The

concentration of A atoms is cA = NA/
N and the concentration of B atoms is

cB = 1 − cA. Introduce variables σi related to the number of A atoms nAi on
site i by nAi = 1

2 (1 + σi). Obviously, σi = ±1 and nBi = 1
2 (1− σi).

A. Calculate the energy of the binary alloy in a state {σ1, · · · , σN}.
B. Define variables J and h in such a way that this expression looks like the

Ising model.
C. If J > 0 one finds a critical temperature Tc. What happens below Tc in

this case?
D. Suppose J < 0. What is the structure of the alloy at low temperatures?

Problem 2.

Consider a one-dimensional Ising model. Assume that J < 0. Introduce new
spin-variables τi related to the σi variables by τi = (−1)iσi.

A. Calculate Tc for this system.
B. What is happening below Tc?

Problem 3.

Consider the Heisenberg model for spin 1
2 particles. The Hamiltonian is

given by

H = −J
∑

<ij>

~Si • ~Sj

The spin operators ~S are the standard Pauli matrices
(

0 1
1 0

)
,
(

0 −ı
ı 0

)
,

and
(

1 0
0 −1

)
. The state of each individual spin is a two-spinor

(
γ
µ

)
. The

state of the whole system is now given by the direct product of N spinors |i >,
in the form |1 > |2 > · · · |N >. Assume that the density matrix ρ can be written
as a direct product of 2× 2 matrices ρ̃ like we did for the Ising model. Use the
same parametrization for ρ̃ as for the Ising model.

A. Calculate the internal energy as a function of a and m. What is the
difference compared with the result for the Ising model?
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B. Find three equations relating the matrix elements log(ρ̃)ij and a and m
by minimizing the free energy with respect to a and m.

C. A fourth equation can be found using log detA = Tr log A for arbitrary
matrices. Use this together with the results of B to find an equation for a and
m of the form log ρ̃ = matrix containing a and m.

D. Show that a = 0 corresponds to the thermodynamic equilibrium state
and that the results for the Heisenberg and Ising model in this approximation
are the same.

Problem 4.

Probably the simplest cluster one can imagine in a square lattice is a square
of four atomic sites. Treat the interactions between these four sites exactly but
treat the interactions with the remainder of the lattice in a mean-field approach.

A. How many inequivalent sites are there within this cluster?
B. The effective field on each site is found by assuming that the spin on

all neighboring sites that are not inside the cluster is equal to m, the average
magnetization. What is the cluster Hamiltonian?

C. What is the self-consistency condition?
D. Calculate Tc. How does this compare with the mean-field value kBTc = 4J

and the cluster value kBTc = 2.885J?

Problem 5.

A more complicated cluster in a square lattice is a square of nine sites.
A. How many inequivalent sites are there in this cluster?
B. We need to impose conditions of the form < σi >=< σj >. How many

constraints does this give?
C. What is the cluster Hamiltonian? How many effective fields are there?
D. Indicate how you would try to solve this cluster problem.

Problem 6.

Consider a linear chain with alternating spin one-half and spin one atoms.
The state of this system is given by {s1, s2, · · ·} where si = ±1 if i is odd and
si = −2, 0, 2 for i even. The energy of such a state is given by

E {s1, s2, · · ·} = −J
∑

i

sisi+1 − h
∑

i

si

The values of the average magnetization on the two types of sites are given
by m1/2 and m1. Generalize the mean field approach to construct two coupled
equations for these quantities and calculate Tc for this system.

Problem 7.
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The positions of the sites on a lattice are given by so-called Bravais lattice
vectors ~Ri. The Ising model can be generalized to include interactions between
all spins. Typically, the strength of the interaction depends only on the distance
between the spins:

E {σi} = −1
2

∑

i 6=j

J(|~Ri − ~Rj |)σiσj − h
∑

i

σi

Calculate Tc in the mean field approximation.

Problem 8.

Consider the following generalization of the Ising model. The value of the
spin parameter Si on lattice site i can be ±1 or 0. The energy of the configura-
tion {Si} is

E {Si} = −J
∑

<ij>

SiSj − h
∑

i

Si

Use the density operator approach. Assume that the fluctuations in the
spins are independent, hence

< S1, S2, · · · |ρ|S′1, S′2, · · · >=< S1|ρ̃|S′1 >< S2|ρ̃|S′2 > · · ·
Derive a self-consistency equation for the average moment M on each site.

Show that Tc is proportional to qJ .

Problem 9.

Consider the following generalization of the Ising model. The value of the
spin parameter Si on lattice site i can be ±1 or 0. The energy of the configura-
tion {Si} is

E {Si} = −J
∑

<ij>

SiSj − h
∑

i

Si

Using the mean field approximation, derive a self-consistency equation for
the average moment M on each site.

Problem 10.

Consider a two-dimensional triangular lattice (q=6). A cluster in this lattice
is formed by a triangle of three sites. The interactions between the atoms in
this cluster are treated exactly. The effect of the rest of the lattice is treated in
the mean field approach. Evaluate Tc in this case. Compare your result to the
results of the mean-field and Bethe cluster approach.



Chapter 9

General methods: critical
exponents.

9.1 Introduction.

In this chapter we will consider a variety of methods that can give us approxi-
mations in statistical mechanics. In the previous chapter we looked at the mean
field approximation and its cousins. We found that mean field gives a reasonable
description if there is a phase transition. It also leads to a decent estimate of
the transition temperature, except for the one dimensional Ising chain. Clus-
ter approximations improve the estimates of the transition temperature. All
in all these methods are very useful to describe phase transitions and help us
understand different models. Where they fail, however, is in providing values
for critical exponents. They always give the same values, no matter what the
model is, due to the mean field nature. This is easy to understand. In a mean
field model we approximate effects further away by an average. When corre-
lation lengths become large, a cluster will always sample that average value
and essentially see a mean field. So on this chapter we focus in more detail on
correlation functions and critical exponents.

There are two possible goals of calculations in statistical mechanics. One
useful result is to be able to find certain thermal averages of quantities. But
the real goal is to find the appropriate free energy, since everything follows
from there. That second goal is more difficult. For example, in the Bethe
approximation we needed to include a difficult term f(h′) in the energy. For
the calculation of averages like 〈σ0σj〉 that term dropped out. But without that
term we cannot evaluate free energies.

191
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9.2 Integration over the coupling constant.

Since exact answers are hard to get for most realistic models, it is useful to know
a variety of tricks to obtain good approximations. The procedure of integration
over the coupling constant is one of those tricks. We will not investigate the
relations between this method and others, but simply remark that this method
is another way of obtaining a correlated density matrix. We use the Ising model
again for illustration. We will break up the Hamiltonian into two parts:

V = −
∑

{σ1,···,σN}
|σ1, · · · , σN >

∑

<ij>

σiσj < σ1, · · · , σN | (9.1)

H0 = −h
∑

{σ1,···,σN}
|σ1, · · · , σN >

∑

i

σi < σ1, · · · , σN | (9.2)

and study the general Hamiltonian

H = H0 + λV (9.3)

In this division the term H0 contains all the easy terms. In other systems it
would include the kinetic energy in many cases. The important point is that
the operator H0 can be diagonalized, we can find eigenvalues and eigenvectors.
The operator V contains all the hard terms, the ones that we do not know how
to deal with, and have approximated before. We are obviously interested in the
case λ = J . We will, however, treat λ as a variable parameter. The division
is made in such a way that the problem is simple for λ = 0. Again, we always
make sure that for H0 the solutions are known.

The free energy as a function of λ is

G(λ) = −kBT log
(
Tr e−βH0−βλV)

(9.4)

and the derivative with respect to λ is

dG
dλ

= − kBT

Tr e−βH0−βλV Tr
d

dλ
e−βH0−βλV (9.5)

One always has to be careful when taking derivatives of operators. In this
case H0 and V commute and the exponent of the sum is the product of the
single exponents.

[H0,V] = 0 ⇒ e−βH0−βλV = e−βH0e−βλV (9.6)

The derivative with respect to λ affects the second term only, and we have

d

dλ
e−βλV =

d

dλ

∞∑
n=0

1
n!

(−βλ)nVn =
∞∑

n=1

1
(n− 1)!

λn−1(−β)nVn = −βVe−βλV

(9.7)
which leads to



9.2. INTEGRATION OVER THE COUPLING CONSTANT. 193

dG
dλ

=
Tr Ve−βH0−βλV

Tr e−βH0−βλV (9.8)

It is useful to digress here and show that this result is true in general. We
have

d

dλ
e−βH0−βλV =

∞∑
n=0

1
n!

d

dλ
[−βH0 − βλV]n (9.9)

Because operators do not commute we need to keep track of the order of the
operators and derivatives:

d

dλ
e−βH0−βλV =

∞∑
n=1

1
n!

n∑
m=1

[−βH0 − βλV]m−1 [−βV] [−βH0 − βλV]n−m

(9.10)
The derivative of the very first term is zero, so the sum starts at n = 1. Next
we realize that we need the trace of this expression, and that the trace obeys
Tr(ABC) = Tr(CAB). This gives

Tr
d

dλ
e−βH0−βλV =

∞∑
n=1

1
n!

n∑
m=1

Tr [−βV] [−βH0 − βλV]n−1 (9.11)

Now we can do the sum on m, it simply gives a factor n and find

Tr
d

dλ
e−βH0−βλV =

∞∑
n=1

1
(n− 1)!

Tr [−βV] [−βH0 − βλV]n−1 (9.12)

Finally, we reassemble the sum and obtain

Tr
d

dλ
e−βH0−βλV = Tr [−βV] e−βH0−βλV (9.13)

leading to the required result. Integrating over the coupling constant λ then
gives the following formula for the free energy

G(λ) = G(0) +
∫ J

0

dλ
dG
dλ

= G(0) +
∫ J

0

dλ

λ
〈λV〉λ (9.14)

where it is standard practice to put a factor λ inside the ensemble average.
Remember that G(0) is a known quantity.

The formula above tells us that once we know 〈V〉λ we can calculate the
free energy. That is not surprising, because once we have the pair correlation
function and hence the potential we essentially have solved the problem. The
trick is not how to get the pair correlation function exactly, but how to approx-
imate it. Using an approximation to the pair correlation function will give us
in general an improved free energy.
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As an example we will consider the result obtained in the Bethe approxima-
tion for the one-dimensional Ising model without an external field (h = 0). The
effective field h′ is a function of λ and is determined by

cosh β(λ + h′)
cosh β(λ− h′)

= eh′2β (9.15)

But we already know that there are no phase transitions, independent of the
value of λ, and hence h′ = 0. In the Bethe approximation the only interaction
term pertains to the bonds between the central site and its neighbors, and hence
the interaction energy of a cluster is

〈λV〉λ = 〈−λσ0

2∑

i=1

σi〉λ (9.16)

Now we use the results from the previous chapter to calculate this average.
In order to find the potential energy we calculate the cluster energy from the
partition function. The cluster partition function was determined in the previous
chapter, and in this case is given by

Zc = 8 cosh2(βλ) (9.17)

and the cluster energy Ec follows from

Ec = − ∂

∂β
log Zc = −2λ tanh βλ (9.18)

Since h = 0 we have H0 = 0, and all the internal energy is due to the interaction
term. The internal energy of the whole system of N particles is

U = 〈λV〉 =
1
2
NEc (9.19)

The factor one-half is needed to avoid double counting of all bonds. A cluster
contains two bonds! As a result we find that

G(J) = G(0)−N

∫ J

0

dλ tanh βλ = G(0)−NkBT log cosh βJ (9.20)

Next, we determine the free energy at λ = 0. There is only an entropy term,
since the internal energy is zero. Without a magnetic field and without inter-
actions all configurations are possible, thus S = NkB log 2, and we find after
combining the two logarithmic terms:

G(J) = −NkBT log(2 cosh βJ) (9.21)

The average of the interaction energy was obtained in the Bethe approxima-
tion. It turns out, however, that the calculated free energy is exact! The reason
for that is the simplicity of the system. There is no phase transition, and the
correlation function in the cluster approximation is actually correct.
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Note that in this case we could also have obtained the same result by calcu-
lating the entropy from the specific heat

S =
∫ T

0

dT ′

T ′
dU

dT ′
= NkBJ

∫ ∞

β

β′dβ′

cosh2 β′J
(9.22)

This integral is harder to evaluate, however. But it can be done, especially since
we already know the answer!

We can also analyze the Ising model in some more detail. The energy of a
configuration is

E{σ1, σ2, · · ·} = −J
∑

<ij>

σiσj − h
∑

i

σi (9.23)

The interaction term is large, of course, and the division we made before is not
optimal. We would like to subtract some average value of the spins and write

E{σ1, σ2, · · ·} = −J
∑

<ij>

(σi − µ)(σj − µ)− (Jµq + h)
∑

i

σi + Jµ2 1
2
Nq (9.24)

and we define this for a variable coupling constant via

Eλ{σ1, σ2, · · ·} = −λ
∑

<ij>

(σi−µ)(σj −µ)− (Jµq + h)
∑

i

σi + Jµ2 1
2
Nq (9.25)

It would be natural to define µ as the average magnetization. But that value de-
pends on the value of λ, which makes the λ dependence of the Hamiltonian quite
complicated. Hence we need to choose µ as some kind of average magnetization,
and an appropriate value of the coupling constant.

The reference system has energy eigenvalues given by

E0{σ1, σ2, · · ·} = −(Jµq + h)
∑

i

σi + Jµ2 1
2
Nq (9.26)

and the partition function is

Z0(T, h, N) = e−βJµ2 1
2 Nq

∑
σ1,σ2,···

eβ(Jµq+h)
∑

i σi (9.27)

which gives

Z0(T, h,N) = e−βJµ2 1
2 Nq[2 cosh β(Jµq + h)]N (9.28)

and the free energy is

G0(T, h, N) = Jµ2 1
2
Nq −NkBT log(2 cosh β(Jµq + h)) (9.29)

The interaction term is now
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〈V〉λ = −〈
∑

<ij>

(σi − µ)(σj − µ)〉λ = −1
2
Nq〈(σi − µ)(σj − µ)〉λ (9.30)

We now introduce the average magnetization mλ and write

〈V〉λ = −1
2
Nq〈(σi −mλ)(σj −mλ)〉λ − 1

2
Nq〈2(mλ − µ)σi〉λ +

1
2
Nq(m2

λ − µ2)

(9.31)
Next we approximate the correlations between the fluctuations around the av-
erage by zero and obtain

〈V〉λ ≈ −1
2
Nq〈2(mλ − µ)σi〉λ +

1
2
Nq(m2

λ − µ2) (9.32)

or

〈V〉λ ≈ −Nq(mλ − µ)mλ +
1
2
Nq(m2

λ − µ2) (9.33)

or

〈V〉λ ≈ −1
2
Nq(mλ − µ)2 (9.34)

This gives
(

∂G
∂λ

)

T,h,N

= −1
2
Nq(mλ − µ)2 (9.35)

The magnetic moment is related to the Gibbs like free energy via

Nmλ = −
(

∂G
∂h

)

T,N

(9.36)

and hence

N

(
∂m

∂λ

)

h,T

= −
(

∂2G
∂h∂λ

)

T,N

= Nq(m− µ)

((
∂m

∂h

)

λ,T

−
(

∂µ

∂h

)

T

)
(9.37)

where we have m(h, λ, T ) and µ(h, T ). This equation shows that if mλ = µ the
magnetization will not change as a function of λ. Also, because for large fields
the magnetization approaches one, we see that if m > µ one needs dm

dh < dµ
dh and

hence the right hand side of the partial differential equation is zero. This means
that for large values of λ the solutions for m will approach µ. Now suppose that
we use the mean field solution for the magnetization with λ = J for µ. Then
we conclude that the true magnetization of the system will be smaller than the
mean field value, because we integrate to J only and not to infinity. Of course,
this uses an approximation for the correlation function, so the conclusion does
not have to be general.
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9.3 Critical exponents.

Most of the interesting behavior of the phase transitions occurs near the critical
temperature. We have shown that the mean field results are equivalent to the
Landau theory discussed in the thermodynamics, and hence near Tc we have the
magnetization proportional to the square root of Tc − T , and hence the critical
exponent β is 1

2 in mean field theory. In the Bethe approximation we have to
find the value of h′ for temperatures just below Tc. It turns out that in the
Bethe approximation the phase transition is also second order, and hence near
Tc the value of h′ will be small. Hence we can expand the equation for h′ in
terms of h′ and we find

cosh β(J + h′)
cosh β(J − h′)

≈ 1 + h′2β tanh βJ + (h′)22β2 tanh2 βJ +O(h′)3 (9.38)

e
2βh′
q−1 ≈ 1 + h′

2β

q − 1
+ (h′)2

2β2

(q − 1)2
+O(h′)3 (9.39)

The condition for a phase transition is the equality of the derivatives at
h′ = 0. This gave our self-consistency condition. If this condition is satisfied, the
second derivatives are also the same! It is not hard to show that the third order
derivatives are really different. Therefore, when h′ is small, it is determined by

h′2β tanh βJ + (h′)22β2 tanh2 βJ + a(h′)3 = h′
2β

q − 1
+ (h′)2

2β2

(q − 1)2
+ b(h′)3

(9.40)
where a and b are different numbers. At the critical temperature h′ = 0 is a
triple solution. This has to be the case, since at a temperature just below the
critical temperature the solutions are h′ = 0 and h′ = ±ε, where ε is a small
number. These three solutions merge together at the critical temperature. At
a temperature slightly below the critical temperature we can write

0 = h′
(
(T − Tc)(c + dh′) + (a− b)(h′)2

)
(9.41)

where c and d are constants. This shows that near Tc the effective field h′

is proportional to
√

Tc − T . The equations in the previous chapter can be
used to show that for small values of h the magnetization m is proportional
to h′, and hence we find that the critical exponent β is equal to 1

2 in the Bethe
approximation, just as it is in mean field theory.

The susceptibility χ is defined by

χ(h, T ) =
(

∂m

∂h

)

T

(9.42)

and can be calculated easily in the mean field approximation from

m = tanh β(qJm + h) (9.43)
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Differentiating both sides and using h = 0 gives

χ(h = 0, T ) =
β

cosh2 βJqm
{qJχ(h = 0, T ) + 1} (9.44)

If T is larger than Tc we have m = 0 and we find that near Tc

χ(0, T ) ≈ 1
kB(T − Tc)

(9.45)

If, on the other hand, T is less than Tc, the magnetization m is non-zero. Near Tc

the value of m is small, however, and we can expand the square of the hyperbolic
cosine

cosh2 βqJm ≈ 1 + (βqJ)2α2(Tc − T ) (9.46)

where we used that near the critical temperature m ≈ α
√

Tc − T . The value of
α follows from the results in the previous chapter and we find α2 = 3

Tc
. From

9.44 we get

{
cosh2 βqJm− βqJ

}
χ(h = 0, T ) = β (9.47)

Since βqJ = Tc−T
T ≈ 1

Tc
(Tc − T ) near Tc we find

χ(0, T ) ≈ 1
2kB(Tc − T )

(9.48)

Hence near the critical temperature we find in general that

χ(0, T ) = A±|T − Tc|−γ (9.49)

where the value of the critical exponent γ = 1, just like we found in mean field
theory in chapter four.

The calculation in the Bethe approximation is harder. We have from the
previous chapter:

m =
cosh β(J + h′ + h)− cosh β(J − h′ − h)
cosh β(J + h′ + h) + cosh β(J − h′ − h)

(9.50)

with self-consistency equation 8.129:

cosh(β(J + h + h′))
cosh(β(J − h− h′))

= e
2

q−1 βh′ (9.51)

The first of these two equations gives

β−1

(
∂m

∂h

)

T

=

[(sinhβ(J + h′ + h) + sinh β(J − h′ − h))(cosh β(J + h′ + h) + cosh β(J − h′ − h))−
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(cosh β(J + h′ + h)− cosh β(J − h′ − h))(sinhβ(J + h′ + h)− sinhβ(J − h′ − h))]

1
(coshβ(J + h′ + h) + cosh β(J − h′ − h))2

((
∂h′

∂h

)

T

+ 1
)

(9.52)

Above Tc we have for h = 0 that also h′ = 0 and hence
(

∂m

∂h

)

T

= tanh(βJ)
((

∂h′

∂h

)

T

+ 1
)

(9.53)

On the other hand, from the self-consistency equation we find

β
sinh(β(J + h + h′)) cosh(β(J − h− h′)) + cosh(β(J + h + h′)) sinh(β(J − h− h′))

cosh2(β(J − h− h′))

((
∂h′

∂h

)

T

+ 1
)

=
2

q − 1
βe

2
q−1 βh′

(
∂h′

∂h

)

T

(9.54)

which for h = 0 and h′ = 0 leads to

tanh(βJ)
((

∂h′

∂h

)

T

+ 1
)

=
1

q − 1

(
∂h′

∂h

)

T

(9.55)

or
(

∂h′

∂h

)

T

=
tanh(βJ)

1
q−1 − tanh(βJ)

(9.56)

which shows that
(

∂h′
∂h

)
T

diverges like (T − T c)−1 and hence that the suscep-
tibility diverges in that manner, again giving γ = 1. One can also calculate the
behavior at the other side of the critical temperature, but that is even more
messy.

The exact solutions for the Ising model show that there is no phase transition
in one dimension, that γ = 7

4 in two dimensions and that γ ≈ 1.25 ( and perhaps
equal to 5

4? ) in three dimensions. The higher the number of dimensions,
the closer the value is to the mean field result and the result of the Bethe
approximation.

We could continue calculating all other critical exponents for the Ising model
in both the mean-field and the Bethe approximation. Since we have shown that
the mean field approximation is equivalent to a second order Landau theory,
we already know the answers. The answers for the Bethe approximation will
be the same! This is due to the following. Near the critical temperature the
only important length scale is the correlation length ξ, which diverges. If the
correlation length is smaller than the radius of the cluster used in the Bethe
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approximation, the answers in the Bethe approximation and in mean-field theory
will be different. If, on the other hand, the correlation length ξ is much larger
than the size of the cluster, the size of the cluster is not important and the
problem is essentially solved in a mean-field approach. Since ξ diverges near
Tc, the Bethe approximation is equivalent to a mean field theory in this limit.
Therefore, the Bethe approximation will give the same critical exponents as
mean-field theory. In order to make a real improvement, we need to take into
account correlations of infinite range.

We can improve the analysis, however. We will use the susceptibility as
an example, but the analysis woks for all critical exponents. Near the critical
temperature we have χ ≈ A±|T−Tc|γ , plus higher order terms. This means that
near the critical temperature we have log(χ) =≈ log(A±) + γ log |T − Tc|. The
second term will dominate if we are close enough to the critical temperature.
Hence we have

log(χ)
log |T − Tc| → γ (9.57)

near the critical temperature. Hence if we plot the ratio on the left as a function
of temperature, we should be able to extract the value of γ.

Very simply stated, so what can be wrong. First of all, we assume that we
know the value of the critical temperature. That might be true or not. What
happens if we are wrong? If we do not use the exact value of the critical tem-
perature a plot of the ratio of the logarithms will show two peaks. The ratio
will go to zero when the denominator goes to infinity, or when the temperature
reaches the erroneous value of the critical temperature. The ratio will go to
infinity when the enumerator diverges, at the true value of the critical temper-
ature. For example, see figure 9.1 where we have used χ = 1

|t−1| (1 + 0.1|t− 1|)
and moved Tc by a small amount to Tc = 1.01. We can use this behavior to find
the critical temperature. If we have sufficient data near the phase transition we
try different values of Tc and see when the peak and zero merge.

But what is near the critical temperature? One could guess that the correc-
tion in χ is a factor of the form 1 + B±|T − Tc|. This gives an extra term in
the denominator equal to the logarithm of this expression, and near the critical
temperature we now find

log(χ)
log |T − Tc| → γ + B±

|T − Tc|
log |T − Tc| (9.58)

The second term goes to zero, indeed. But how fast? We do not know. See figure
9.2 for a typical case. We used the same form as before, but now with the correct
value of the critical temperature. In addition, the previous argument assumes
that the behavior near the critical temperature is given by powers only. There
are theoretical results where near the critical temperature we have logarithmic
factors, χ ∝ |T −Tc|γ log |T −Tc|. Because the logarithm goes to infinity slower
than any inverse power, such a factor does not change the value of the critical
exponent, but it certainly changes the behavior near the phase transition. We
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Figure 9.1: Ideal case to find critical exponent, with wrong guess of critical
temperature.

need to get very close to the phase transition to get rid of such terms, see figure
9.3.

Unfortunately, reality is even more complicated. The best way to discuss
this is to think about the correlation length ξ, the length over which spins
act coherently. This length diverges near the critical temperature. Using the
correlation length we can define the range of temperatures needed to find the
values of the critical exponents. If the range of the interactions in the material
is Rint we need temperatures close enough to Tc so that ξ(T − Tc) À Rint.
But in real life the correlation length cannot increase beyond the size of the
sample. Suppose the sample has similar dimensions in all directions, given by a
number Rs. If we have ξ(T − Tc) > Rs the sample will act as a large molecule
with a given susceptibility, which will remain the same. There is no divergence
compensating the denominator, and the ratio of the logarithms goes to zero, see
figure 9.4.

This shows that we can still find the critical exponent for an infinite sample
by connecting both sides of the curve, but the precision does suffer. Also, if
the sample dimensions are not the same in all directions we will see a transition
from three to two to one to zero dimensional behavior!

Finally, we can use this to analyze cluster data. If the size of the cluster
is larger than the effective range of the interactions the ratio of the logarithms
will be close to the correct value, but if the correlation length becomes larger
than the cluster size we will get the mean field results. See figure 9.5,
where we changed the model so the exact results for γ is two.

The previous discussion shows the importance of the thermodynamic limit.
For a finite sample the behavior right at the critical temperature is always
normal or analytic. Nothing diverges. But close to the critical temperature we
see the characteristics of an infinite sample. The larger the sample, the closer
we can get to the critical temperature an still see the behavior of an infinite
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Figure 9.2: Ideal case to find critical exponent.
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Figure 9.3: Non-analytic case to find critical exponent.

sample. Hence the procedure to find the critical exponents needs to consider
critical behavior close to the phase transition as a function of sample size. If
we replace the outside of the sample by something else, the values right at
the critical temperature change. For example, if we replace the outside by an
effective medium we obtain mean field results right at Tc. But away from the
critical temperature we get the characteristics of the sample, and the outside
world does not play a role. For a finite sample there are no singularities at the
phase transition, only smooth changes in behavior. If these changes become
abrupt for in the thermodynamic limit, then we have a singularity and a phase
transition.
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Figure 9.4: Finite sample case to find critical exponent.
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Figure 9.5: Cluster results to find critical exponent.

9.4 Relation between susceptibility and fluctu-
ations.

As we have remarked a few times, response functions are related to fluctuations.
This can easily be shown for the susceptibility. By definition we have

χ =
∂

∂h

Tr S0e
−β(H−hM)

Tr e−β(H−hM)
(9.59)

This derivative can be performed explicitly, since H and M =
∑

i Si commute.
We find
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χ =
Tr S0βMe−β(H−hM)

Tr e−β(H−hM)
−

[
Tr S0e

−β(H−hM)
] [

TrβM e−β(H−hM)
]

(
Tr e−β(H−hM)

)2 (9.60)

or

χ = β
∑

i

{〈S0Si〉 − 〈S0〉〈Si〉} (9.61)

This can be transformed to

χ = β
∑

i

〈S0 −m〉〈Si −m〉 (9.62)

which clearly shows that χ is directly related to the fluctuations in the spin
variables. Here we used 〈S0〉 = 〈Si〉 = m.

If fluctuations are uncorrelated we have < AB >=< A >< B > which would
seem to imply that for uncorrelated fluctuations χ = 0. That is not correct,
however. Fluctuations on the same site are always correlated, and in that case
we would get χ =< (S0 −m)2 >, which is always positive indeed.

It is customary to define a spin-correlation function Γi by

Γi(T ) = 〈S0Si〉T − 〈S0〉T 〈Si〉T (9.63)

If the spins at site 0 and site i are uncorrelated, Γi = 0. This spin-correlation
function can also be expressed in terms of real coordinates ~r, as long as we
understand that the value Γ(~r, T ) is actually an average over a number of atomic
sites in a volume ∆V which is small compared to the total volume of the crystal.
In that case we find

χ = β

∫
d3rΓ(~r, T ) (9.64)

If for large values of r the spin-correlation function is proportional to r−p the
integral is well-defined only if p > 3. Therefore, at Tc where the spin-correlation
function diverges we need to have p 6 3. At temperatures away from the critical
temperature the spin correlation function does not diverge. If the correlation
function would always be a power law, Γ ∝ r−p(T ), this would imply p = 3 at the
critical temperature, since p(T ) > 3 away from the critical point. That is not
correct, however, because we also have an exponential factor, which disappears
at the critical temperature. In general we write Γ ∝ r−pe−α(T )r and we use
α(T ) > 0 away from the critical point and hence α(Tc) = 0. Since these are the
only two possibilities and since we know from experiment that the first one is
wrong, we find that correlations have to die out exponentially. The length scale
corresponding to this exponential decay is called the correlation length, and at
the critical point the correlation length diverges and becomes infinite.

If we have no correlations we find χ = β(< S2
0 > −m2) = β(1 −m2). Here

we know < S2
0 >= 0 because the value of the spin variable is ±1 and hence
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the value of the square is always one. But the susceptibility diverges even in
mean-field theory! This means that the spin-correlation in mean field theory for
large distances is non-zero. There seems to be a contradiction here, but that is
not true. The only assumption we make in mean field theory is that Γi = 0 for
nearest-neighbors! For further neighbors we do not make any assumptions. We
are not able to calculate the correlation function at larger distances. Similar,
in the Bethe approximation we can only calculate the spin correlation function
inside the cluster. In this case the condition involving h′ is not readily expressed
in terms of the spin-correlation function.

9.5 Exact solution for the Ising chain.

The Ising model in one dimension can be solved exactly. The same statement
is true in two dimensions, but the solution is much more difficult. We will not
do that here. First consider a chain of N atoms without an external field. The
energy of a configuration {σ1, · · · , σN} is given by

H(σ1, · · · , σN ) = −J

N−1∑

i=1

σiσi+1 (9.65)

The partition function is

Z(T, N) =
∑

σ1,···,σN

eβJ
∑

i σiσi+1 (9.66)

which can be calculated by starting at the end via

Z(T,N) =
∑
σ1

∑
σ2

eβJσ1σ2 · · ·
∑
σN

eβJσN−1σN (9.67)

Since the last factor is the only place where σN plays a role, the sum over σN

can be performed giving

∑
σN

eβJσN−1σN = 2 cosh(βJ) (9.68)

Note that σN−1 drops out since it only takes the values ±1 and since the hy-
perbolic cosine is symmetric! Therefore the partition function is

Z(T,N) = 2 cosh(βJ)
∑
σ1

∑
σ2

eβJσ1σ2 · · ·
∑

σN−1

eβJσN−1σN (9.69)

This process is now repeated and leads to

Z(T, N) = 2N−1 coshN−1(βJ)
∑
σ1

= 2N coshN−1(βJ) (9.70)

and the free energy at h = 0 is
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G(T,N, h = 0) = −NkBT log(2 cosh(βJ) + kBT log cosh(βJ) (9.71)

In the thermodynamic limit the second term can be ignored, and the answer
is the same as we found by integrating over the coupling constant.

The previous paragraph gave the results for the Ising chain without a mag-
netic field. What happens when a magnetic field is present? In that case the
calculation is more complicated if we use the same boundary conditions. The
main problem is that the term with the product of neighboring spins has fewer
terms than the term connecting to the magnetic field. It is hard treat both
terms at the same time.

It is possible, however, to change the boundary conditions, since we always
want to take the limit N → ∞. Therefore, we assume periodic boundary
conditions by connecting spin N back with spin 1. Hence in the calculations we
take σ0 = σN and σ1 = σN+1. The energy in the extra bond is small compared
to the total energy if N is large, and disappears in the thermodynamic limit.
The energy of a configuration {σ1, · · · , σN} is

H(σ1, · · · , σN ) = −J

N∑

i=1

σiσi+1 − h

2

N∑

i=1

[σi + σi+1] (9.72)

where we made the magnetic contribution symmetric, which is possible because
we are using periodic boundary conditions. This is written with a single sum-
mation in the form

H(σ1, · · · , σN ) = −
N∑

i=1

f(σi, σi+1) (9.73)

where we defined f(σ, σ′) = Jσσ′ + h
2 (σ + σ′). The partition function is

Z(T, N) =
∑

σ1,···,σN

eβ
∑

i f(σi,σi+1) =
∑

σ1,···,σN

∏

i

eβf(σi,σi+1) (9.74)

This looks like the product of a set of two by two matrices. Hence we define
the matrix T by

T(σ, σ′) = eβJf(σ,σ′) (9.75)

This matrix T is often called a transfer matrix. It is a two by two matrix
looking like

T =
(

eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
(9.76)

The partition function in terms of T is
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Z(T, h, N) =
∑

σ1,···,σN

T(σ1, σ2)T(σ2, σ3) · · ·T(σN , σ1) (9.77)

or simply

Z(T, h, N) = Tr TN (9.78)

This looks like a very simple expression, and it is. There are many situation
in physics where we can write some complicated expression as the trace or
determinant of a product of simple matrices. Our case is particularly easy,
since all matrices are the same. Making progress in the calculation of matrix
expressions is easiest if we know the eigenvalues and eigenvectors. We need to
solve

T|e >= t|e > (9.79)

In our case the matrix is real and symmetric, and we know that there are
two eigenvectors with real eigenvalues. Finding the eigenvalues of a real and
symmetric two by two matrix can always be done. We need to solve det(T −
tE) = 0, where E is the identity matrix. This gives

(eβ(J+h) − t)(eβ(J−h) − t)− e−2βJ = 0 (9.80)

or

t2 − t[eβ(J+h) + eβ(J−h)] + e2βJ − e−2βJ = 0 (9.81)

which has solutions

t± =
1
2

(
eβ(J+h) + eβ(J−h) ±

√
[eβ(J+h) + eβ(J−h)]2 − 4[e2βJ − e−2βJ ]

)

(9.82)

t± = eβJ cosh(βh)± 1
2

√
e2β(J+h) + e2β(J−h) − 2e2βJ + 4e−2βJ (9.83)

t± = eβJ cosh(βh)± 1
2

√
[eβ(J+h) − eβ(J−h)]2 + 4e−2βJ (9.84)

which leads to the final expression

t± = eβJ cosh(βh)±
√

e2βJ sinh2(βh) + e−2βJ (9.85)

There are two real solutions as expected for a real and symmetric matrix. Note
that we have t+ > t−. Also, we have t+ + t− = Tr T = eβ(J+h) + eβ(J−h) > 0
and t+t− = det(T) = e2βJ − e−2βJ > 0. Therefore both eigenvalues have to be
positive. The corresponding eigenvectors are |e± > and the partition function
in terms of these eigenvectors is
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Z(T, h, N) =< e+|TN |e+ > + < e−|TN |e− > (9.86)

Therefore the partition function in terms of the eigenvalues is

Z(T, h, N) = tN+ + tN− (9.87)

and the magnetic free energy is

G(T, h, N) = −kBT log(tN+ + tN− ) (9.88)

Now we use t+ > t− and rewrite this in the form

G(T, h, N) = −kBT log(tN+ [1 +
(

t−
t+

)N

]) (9.89)

G(T, h,N) = −NkBT log(t+)− kBT log(1 +
(

t−
t+

)N

) (9.90)

In the thermodynamic limit N → ∞ the second term becomes zero, because
| t−t+ | < 1 and we find

G(T, h, N) = −NkBT log
(

eβJ cosh(βh) +
√

e2βJ sinh2(βh) + e−2βJ

)
(9.91)

In the limit h = 0 we recover our previous result. The magnetization per
particle m follows from

m = − 1
N

(
∂G

∂h

)

T,N

=

kBT
eβJβ sinh(βh) + 1

2 [e2βJ sinh2(βh) + e−2βJ ]−
1
2 [e2βJ2 sinh(βh) cosh(βh)β]

eβJ cosh(βh) +
√

e2βJ sinh2(βh) + e−2βJ

(9.92)
or

m =
eβJ sinh(βh)√

e2βJ sinh2(βh) + e−2βJ

√
e2βJ sinh2(βh) + e−2βJ + eβJ cosh(βh)

eβJ cosh(βh) +
√

e2βJ sinh2(βh) + e−2βJ

(9.93)

with the final result

m =
sinh(βh)√

sinh2(βh) + e−4βJ

(9.94)
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This formula shows clearly that there is no phase transition in the one-dimensional
Ising chain. In the limit h → 0 the magnetization m is zero as long as T 6= 0.
Next we ask the question how large a field do we need to get a large magneti-
zation. The condition for a value of m close to one is

sinh2(βh) À e−4βJ (9.95)

Note that this is never satisfied in the limit h → 0, because in that limit the right
hand side goes to zero very rapidly. If we define a field ho by sinh2(βho) = e−4βJ ,
then this field represents the field at which the chain becomes magnetic. In the
limit T → 0 the exponent will be very small, and therefore the hyperbolic sine
is very small. As a result we find

T → 0 ho ≈ kBTe−2βJ (9.96)

Although the Ising chain is non-magnetic at low temperatures, we only need
a very small magnetic field to change its state into a magnetic one. It goes
to zero exponentially fast. We see the susceptibility at zero field is very large
near T = 0, which is the situation close to a phase transition. We can evaluate
χ(h, T, N) =

(
∂m
∂h

)
T,N

and find

χ(h, T, N) =

eβJβ cosh(βh)
√

e2βJ sinh2(βh) + e−2βJ−
eβJ sinh(βh) 1

2 [e2βJ sinh2(βh) + e−2βJ ]−
1
2 e2βJ2 sinh(βh) cosh(βh)β

e2βJ sinh2(βh) + e−2βJ

(9.97)
At h = 0 this is equal to

χ(h = 0, T, N) =
eβJβ

√
e−2βJ

e−2βJ
= βe2βJ (9.98)

which indeed diverges for T → 0.
The solution for m is singular at T = 0, and the effects of this singularity

are felt at small temperatures. It is not surprising that one might interpret the
data as showing a phase transition. For example, the following figure shows m
versus T and h with 4J = 1:

This figure seems to indicate that at low temperatures there is an abrupt
change from negative to positive magnetization as a function of h, with a critical
temperature of about 0.5, which is indeed equal to 2J . But now look at it with
h plotted on a logarithmic scale. Now we see that we always go through an area
with zero magnetization.

For a real phase transition we have a positive critical temperature, below
which we see in the m(T, h) plots an abrupt change. The key word is below the
critical temperature. In the one dimensional Ising chain this point is pushed
to T = 0, and we cannot get below anymore. We still see the effects of the
singularity at T = 0, though. The ordered state at h = 0 might live long
enough that for all practical purposes the system behaves like a system with a
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Figure 9.6: Magnetization of the one dimensional Ising chain.

phase transition. This requires switching times much longer than the time of
the experiment.

Phase transitions are related to singular behavior of the free energy. The
previous example shows that the singularity can be at zero temperature. If one
extends the temperature range to negative values, the singular point will be
at negative values for systems without phase transitions. It is interesting to
study how the position of the singularity depends on parameters in the model
hamiltonian, so one can predict when phase transitions occur.

9.6 Spin-correlation function for the Ising chain.

The spin correlation function Γi is an important quantity used to study the
effects of the singular behavior at T = 0. Note that semantically a critical
temperature can never be zero, since it is not possible to go below the critical
temperature in that case. In this section we calculate the spin-correlation func-
tion for the Ising chain without an external field, that is for h = 0. We use
periodic boundary conditions and assume that the temperature is non-zero.

The spin correlation function is related to the pair distribution function gi,
which is defined by

gi = 〈S0Si〉 = 〈σ0σi〉 (9.99)

This function contains the information that we need to discuss how values of
the spin on one site relate to values of the spin on another site. For quantities
that are not correlated we have < AB >=< A >< B > and hence if the values
on the different sites are not correlated we have gi = 〈σ0σi〉 = 〈σ0〉〈σi〉 = m2.

The spin correlation function measures the correlation between fluctuations
from average between different sites. We have
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Figure 9.7: Magnetization of the one dimensional Ising chain, as a function
of log(h).

Γi = 〈(σ0 −m)(σi −m)〉 = gi −m2 (9.100)

This is often a more useful quantity to study. In a true mean field theory
all fluctuations on different sites would be uncorrelated, and we would have
Γi = δi0(1 − m2). That would imply χ = βΓ0 and this quantity does not
diverge at Tc. That is wrong, we looked at that before, so the mean field theory
makes another approximation.

For the average energy we have

〈H〉 = −JNqm2 − hN − JNqΓnn (9.101)

and mean field theory is obtained by requiring that the spin correlations between
neighboring sites are zero. We only need fluctuations on neighboring sites to be
uncorrelated. Further correlations can be non zero, and will have to be non-zero
because the susceptibility is diverging!

To solve the real problem we need the value of Γnn. We can find this function
by considering the exact behavior of a pair of atoms. But this pair is emerged
in the rest of the system. We now need to ask the question how large the value
of the spin on of of the sites is if the connections are all made to averages. That
requires the knowledge of both the nearest neighbor and the next nearest neigh-
bor spin correlation function. It is possible to build up a system of equations
where the equation for spin correlation functions at a given distance requires
knowledge of spin correlation functions one distance further apart. We need to
know all spin correlation functions to solve this system, or we need to have a
good approximation for how spin correlation functions at large distances decay.

Here we consider the one dimensional Ising chain again. We set the external
field equal to zero. Since without an external field there is no magnetization,
the spin-correlation function is given by
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Γj =
1

Z(T, h = 0, N)

∑
σ0,···,σN−1

σ0σje
βJ
∑N−1

i=0 σiσi+1 (9.102)

where we use periodic boundary conditions and have σ0 = σN .
In order to evaluate this expression we use a simple trick. First we make the

problem more complicated by assuming that all bonds can be different. This
means that the coupling constant between spins i and i+1 is Ji. We treat these
coupling constants as independent parameters. In the end we need, of course,
Ji = J . We define a function S by

S(J0, .., JN−1) =
∑

σ0,···,σN−1

eβ
∑

Jiσiσi+1 (9.103)

This is similar to a partition function, and we have that Z = S(J, J, J, · · ·).
Next we take partial derivatives with respect to J0 to Jj−1. This gives us

∂

∂J0

∂

∂J1
· · · ∂

∂Jj−1
S =

∑
σ0,···,σN−1

eβ
∑

Jiσiσi+1 [βσ0σ1][βσ1σ2] · · · [βσj−1σj ]

(9.104)
Since σ2

i = 1 this simplifies to

∂

∂J0

∂

∂J1
· · · ∂

∂Jj−1
S = βj

∑
σ0,···,σN−1

eβ
∑

Jiσiσi+1σ0σj (9.105)

This leads to

gj =
1

βjS
∂

∂J0

∂

∂J1
· · · ∂

∂Jj−1
S

∣∣∣∣
Ji=J

(9.106)

Therefore we would like to evaluate S. This is done using transfer matrices
like we did in the previous section. We define

T(i) =
(

eβJi e−βJi

e−βJi eβJi

)
(9.107)

or T
(i)
σ,σ′ = eβJiσσ′ . The definition of S has a sum in the exponent and we write

this exponent of a sum as the product of exponents in the form

S =
∑

σ0,···,σN−1

eβJ0σ0σ1eβJ1σ1σ2 · · · eβσN−1σN−1σ0 (9.108)

From this we see that

S = Tr T(0)T(1) · · ·T(N−1) (9.109)

If we need to calculate the trace or determinant of a matrix, it is always
very useful to know the eigenvalues and eigenvectors. The eigenvectors of the
matrices T(i) are easy, they are e± = 1√

2
(1,±1) independent of the index i.
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The eigenvalues do depend on the index i, but they are easy to find,they are
λ

(i)
± = eβJi ± e−βJi . We can now evaluate S(J, J, · · ·) and find

S(J, J, · · ·) =

< e+|T(0)T(1) · · ·T(N−1)|e+ >
∣∣∣
Ji=J

+< e−|T(0)T(1) · · ·T(N−1)|e− >
∣∣∣
Ji=J

= λN
++λN

−
(9.110)

where we have defined λ± = eβJ ± e−βJ .
Next we discuss the derivative with respect to Ji. Because the factor Ji

occurs in one place only, we see

∂

∂Ji
S = Tr T(0)T(1) · · · ∂T(i)

∂Ji
· · ·T(N−1) (9.111)

The derivative of the matrix is easy, and we define

U(i) =
∂T(i)

∂Ji
(9.112)

and find

U(i) = β

(
eβJi −e−βJi

−e−βJi eβJi

)
(9.113)

The eigenvectors of this matrix are again e± independent of the index i, but the
eigenvalues are now interchanged, e+ goes with βλ

(i)
− and vice versa.

We are now in the position to calculate the spin correlation function. We
have

∂

∂J0

∂

∂J1
· · · ∂

∂Jj−1
S = Tr U(0) · · ·U(j−1)T(j) · · ·T(N−1) (9.114)

which is equal to

< e+|U(0) · · ·U(j−1)T(j) · · ·T(N−1)|e+ > + < e−|U(0) · · ·U(j−1)T(j) · · ·T(N−1)|e− >
(9.115)

If we now calculate this expression at Ji = J we find

βjλj
−λN−j

+ + βjλj
+λN−j

− (9.116)

Since the average magnetization is zero, the spin correlation functions is
equal to the pair distribution function, we we get

Γj = gj =
λj
−λN−j

+ + λj
+λN−j

−
λN

+ + λN−
(9.117)
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Because of the periodic boundary conditions this result is symmetric under the
change j ↔ N − j. Also, we have ΓN = 1, which is to be expected because site
N is equal to site 0, and < σ0σN >=< σ2

0 >= 1.
The expression is simplified when we divide the numerator and denominator

by the eigenvalue λ+ to the power N. Note that λ+ > λ− > 0. The ratio of the
two eigenvalues is simple, we have

λ−
λ+

=
eβJ − e−βJ

eβJ + e−βJ
= tanh(βJ) (9.118)

This gives

Γj =
tanhj(βJ) + tanhN−j(βJ)

1 + tanhN (βJ)
(9.119)

This expression is complicated, but we have to remember that we always
need to invoke the thermodynamic limit after all calculations have been done.
That is the case here, we have our final result. If the temperature is non-zero,
tanh(βJ) < 1 and in the limit N À j only the lowest order terms survives. Note
that we have given explicit meaning to the idea of the thermodynamic limit, we
require that N is large compared to j! In that case we can write

Γj = tanhj(βJ) (9.120)

This formula shows that as a function of the distance j the spin correlation
function decays as a power law. Hence it can be related to a correlation length
via

Γj = e−
j
ξ (9.121)

where the correlation length ξ is found by

ξ = − j

log(Γj)
= −[log tanh(βJ)]−1 (9.122)

As expected, we find that the spin correlation decays exponentially. If Γj is
close to one, spins tend to point in the same direction, and the magnetization
is strongly correlated. The spin correlation length measures the distance over
which spins are correlated and tend to point in the same direction. Note that
this common direction can fluctuate!

The correlation length increases with decreasing temperature. We see that
in the limit T → 0 the hyperbolic tangent approaches one and the logarithm
gives zero. We can find the behavior by

tanh(βJ) =
1− e−2βJ

1 + e−2βJ
≈ 1− 2e−2βJ (9.123)

and the logarithm of one plus a small term is approximated by the small term.
That gives
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ξ ≈ 1
2
e2βJ (9.124)

which diverges faster that any power law. Normally we would expect that
ξ ∝ |T − Tc|−ν , but that is not the case here.

Before we draw any conclusions we need to check one thing. The thermody-
namic limit should always be taken last. So we need to take the limit to zero
temperature first! We should not take the limit T → 0 in the expression above.
As usual, the limit T → 0 has to be taken before the limit N →∞. Before the
thermodynamic limit we have

ξ = −j

[
log

(
tanhj(βJ) + tanhN−j(βJ)

1 + tanhN (βJ)

)]−1

(9.125)

Using the exact expression (no approximation) tanh(βJ) = 1− x, with |x| ¿ 1
we have

ξ = −j

[
log

(
(1− x)j + (1− x)N−j

1 + (1− x)N

)]−1

(9.126)

If we take linear terms in the powers only, we see that

(1− x)j + (1− x)N−j

1 + (1− x)N
≈ (1− jx) + (1− (N − j)x

1 + (1−Nx)
= 1 (9.127)

Therefore, we need second order terms. We have

(1− x)j + (1− x)N−j

1 + (1− x)N
≈ 2−Nx + j(j−1)

2 x2 + (N−j)(N−j−1)
2 x2

2−Nx + N(N−1)
2 x2

(9.128)

This is equal to

1 + 1
2−Nx

(
j(j−1)

2 x2 + (N−j)(N−j−1)
2 x2

)

1 + 1
2−Nx

N(N−1)
2 x2

(9.129)

which can be approximated by

(1+
1

2−Nx

(
j(j − 1)

2
x2 +

(N − j)(N − j − 1)
2

x2

)
)(1− 1

2−Nx

N(N − 1)
2

x2)

(9.130)
which is approximated by

1 +
1

2−Nx

(
j(j − 1)

2
x2 +

(N − j)(N − j − 1)
2

x2

)
− 1

2−Nx

N(N − 1)
2

x2

(9.131)
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which gives up to second order

1 +
(

j(j − 1)
4

+
(N − j)(N − j − 1)

4
− N(N − 1)

4

)
x2 (9.132)

or

1 +
1
4

(j(j − 1)− jN −N(j + 1) + j(j + 1) + N)x2 (9.133)

or

1 +
1
4

(
2j2 − 2jN

)
x2 (9.134)

We now have for the correlation length

ξ ≈ −j

[
log

(
1 +

1
2
j(j −N)x2

)]−1

(9.135)

and after approximating the logarithm

ξ ≈ 2
(N − j)x2

(9.136)

But now we are able to approximate the value of x by −2e−2βJ and obtain

ξ ≈ e4βJ

2(N − j)
(9.137)

This is a different result, indeed. In the limit of zero temperature the hyperbolic
tangent is very close to one, and all terms in the pair correlation function play
a role. But the divergence is still exponential in stead of a power law, so that
qualitative conclusion did not change. This is another consequence of the fact
that at zero temperature there is not really a phase transition.

The previous results have some interesting consequences. First, suppose
that the correlation length is equal to the length of the chain. The whole chain
will act in a correlated fashion. At a given time it is very likely that all the
spins point in the same direction and one would be tempted to call the chain
magnetic. There will be times, however, where part of the chain is magnetized in
one direction, and part in the other. Such a disturbance has a higher energy and
will disappear. Nevertheless, this disturbance might switch the magnetization of
the whole chain. An average over an infinite time therefore gives a non-magnetic
state! If we make the chain longer, we have to go to a lower temperature for the
correlation length to be equal to the chain-length. Fluctuations become more
unlikely, and it will take longer for the chain to switch its magnetization. From
a fundamental point of view, the chain is still non-magnetic. From a practical
point of view, the chain is magnetic in a meta-stable state. Therefore, we could
define a transition temperature T ∗ by ξ(T ∗) = N . But phase transitions are
only defined in the thermodynamic limit, and we have limN→∞ T ∗ = 0. But it
does tell us when finite size effects play a role. For a given N we can find T ∗
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and we expect to observe things that are dependent on the sample size below
that temperature.

Finally, we can check the relation between the spin correlation function and
the susceptibility. We found before that χ = β

∑
Γi and this gives

β
∑

i

Γi = β
∑

i

tanhi(βJ) =
β

1− tanh(βJ)
(9.138)

and for small temperatures this is about 1
2βe2βJ . That is off by a factor of

two. Again, this is not surprising. We used the result obtained after taking
the thermodynamic limit to calculate the result. We need to take the whole
expression as a function of N , though, and evaluate

N−1∑

j=0

tanhj(βJ) + tanhN−j(βJ)
1 + tanhN (βJ)

(9.139)

This is equal to

1
1 + tanhN (βJ)




N−1∑

j=0

tanhj(βJ) + tanhN (βJ)
N−1∑

j=0

tanh−j(βJ)


 (9.140)

or

1
1 + tanhN (βJ)

(
1− tanhN (βJ)
1− tanh(βJ)

+ tanhN (βJ)
1− tanh−N (βJ)
1− tanh−1(βJ)

)
(9.141)

or

1
1 + tanhN (βJ)

(
1− tanhN (βJ)
1− tanh(βJ)

+ tanh(βJ)
tanhN (βJ)− 1
tanh(βJ)− 1

)
(9.142)

or

1− tanhN (βJ)
1 + tanhN (βJ)

1 + tanh(βJ)
1− tanh(βJ)

(9.143)

and now the results are consistent. If we take the thermodynamic limit in the
last equation we get an extra factor in the denominator, which is equal to two
at low temperature, and which is needed to get the results we derived before.
Also, if we first take the limit to zero temperature the result becomes N , which
is correct because all atoms now act in the same way and the magnetization of
one atom as a function of h follows Curie’s law with χ = Nβ.

The observations in the last section might seem a bit esoteric, but they
are important. Too often approximated results are used to obtain erroneous
answers. One needs to know when approximations can be made.
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9.7 Renormalization group theory.

A very powerful way of treating critical phenomena is via renormalization group
theory. The basic idea behind this theory is very simple. Near a critical point
the dominant length scale for any system is the correlation length ξ. Exactly at
the critical temperature this correlation length diverges and somehow a picture
of a given state of a system should be independent of any length scale. In
other words, if we paint spin-up atoms red and spin-down atoms blue, in a
magnetic system the pattern we observe should be independent of any length
scale. If we look at the pattern of spins with atomic resolution we will see the
individual red and blue dots. If we diminish the resolution we will start to see
average colors, obtained by mixing the effects of a few dots. If we decrease
the resolution even more, the average color will depend on the effects of more
dots in a larger region. Imagine a whole series of pictures taken this way, with
decreasing resolution. The pictures with atomic resolution will look somewhat
different, since we see the individual dots. All the other pictures should look
very similar, however, since the divergence of the correlation length has taken
away our measure of length. There is no way to distinguish the pictures by their
pattern and deduce the magnification from the observed pattern. Notice that
in real life this fails since samples are of finite dimensions and at some point
we will see the boundaries of the samples. Theorists do not bother with these
trivial details.

The previous paragraph sketches the concepts of renormalization group the-
ory. Essentially we apply scaling theory but now start at the microscopic level.
We build the macroscopic theory up from the ground, by averaging over larger
and larger blocks. The next step is to formulate this idea in mathematical terms.
We need to define some kind of transformation which corresponds to decreasing
the magnetization. The easiest way is to define a procedure that tells us how to
average over all variables in a certain volume. The one-dimensional Ising model
will again serve as an example. The atomic sites are labelled with an index i.
Suppose we want to decrease the magnification by an integral factor p. Hence
we define a new index j which also takes all integer values and label the atoms
in group j by i = pj + k , with k = 1, 2, · · · , p. The spin in cell j can be defined
in several ways. For example, we could assign it the average value or the value
of the left-most element of the cell. In the end, our result should be independent
of this detail, and we choose the procedure that is easiest to treat.

This procedure defines a transformation Rp in the set of states that can
be characterized by {· · · , σ−1, σ0, σ1, · · ·}. It is not a one-to-one mapping and
hence the word group is a misnomer, the inverse of Rp does not exist. This
transformation is also applied to the Hamiltonian and the requirement is that
at a critical point the Hamiltonian is invariant under the operations of the
renormalization group.

These ideas are best illustrated by using the one-dimensional Ising ring as
an example, even though this model does not show a phase transition. It is the
easiest one for actual calculations, and it will serve to get the ideas across. The
partition function is given by
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Z(T,N, h) =
∑

{σ1,···,σN}
eβJ

∑N
i=1 σiσi+1+βh

∑N
i=1 σi (9.144)

The transformation we have in mind is a decrease of the magnification by
a factor of two. Hence we plan to combine spins 2j and 2j + 1 into a single
average spin with value σ′j = σ2j . We also combine βJ into one symbol J̃ and
similarly write h̃ = βh. For simplicity we assume that N is even. Of course, in
the end we need to take the limit N → ∞, and the fact that N is even or odd
does not play a role. The parameters in the partition function are therefore J̃ ,
h̃, and N . Our goal is to write the partition function in the form

Z(N, J̃, h̃) =
∑

�
σ′1,···,σ′N

2

�
e
E′(σ′1,···,σ′N

2
)

(9.145)

This can be accomplished very easily by separating out the odd and even values
of i in the original formula of the partition function. Using the periodic boundary
conditions to give the original Hamiltonian a symmetrical form we find

Z(N, J̃, h̃) =
∑

σ2,σ4,···

∑
σ1,σ3,···

eβJ
∑N

i=1 σiσi+1+βh
∑N

i=1 σi (9.146)

We can think about this in terms bonds between spins. If we consider the spins
with even indices to be the ”master” spin, the spins with odd indices represent
bonds between these master spins. Summation over all possible odd spin states
is equivalent to a summation over all possible bonds between master spins.

Next, we rewrite the summation in the exponent as a summation over odd
spin indices only. That is easy, and we have

J̃

N∑

i=1

σiσi+1 + h̃

N∑

i=1

σi =
∑

i odd

(
J̃σi(σi−1 + σi+1) + h̃(σi +

1
2
(σi−1 + σi+1))

)

(9.147)
which gives

Z(N, J̃, h̃) =
∑

σ2,σ4,···

∑
σ1,σ3,···

∏

i odd

eJ̃σi(σi−1+σi+1)+h̃(σi+
1
2 (σi−1+σi+1)) (9.148)

Now we perform the summation over the variables with odd indices. Each such
sum occurs only in one factor of the product of exponents, and hence these sums
can be done term by term. We arrive at

Z(N, J̃, h̃) =
∑

σ2,σ4,···

∏

i odd

∑
σ

eJ̃σ(σi−1+σi+1)+h̃(σ+ 1
2 (σi−1+σi+1)) (9.149)

or
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Z(N, J̃, h̃) =
∑

σ2,σ4,···

∏

i odd

eh̃( 1
2 (σi−1+σi+1))2 cosh(J̃(σi−1 + σi+1) + h̃) (9.150)

This looks like something for a partition function where only even spins play
a role. On the right hand side we have exponential like things. Can we write
this in a form

Z(N, J̃, h̃) =
∑

σ2,σ4,···
eE(σ2,σ4,···) (9.151)

where the form of the energy is similar to the original energy? Clearly,
the value of the coupling constant will be different, and also the zero of energy
can be shifted. Therefore we try

E(σ2, σ4, · · ·) =
∑

i odd

(
2g + J̃ ′σi−1σi+1 +

1
2
h̃′(σi−1 + σi+1)

)
(9.152)

The question is, is this possible, and if yes, what are the functions g(J̃ , h̃) ,
J̃ ′(J̃ , h̃) , and h̃′(J̃ , h̃).

The answer whether it is possible can be given easily. Because we wrote
the forms symmetric for interchanges of left and right, we need to consider only
three combinations of neighboring even spins, (+,+) , (+,−) = (−,+) , and
(−,−). That gives us three equations, from which we can find three independent
functions!

The equations to solve are

(+, +) : eh̃2 cosh(2J̃ + h̃) = e2g+J̃ ′+h̃′ (9.153)

(+,−) : 2 cosh(h̃) = e2g−J̃′ (9.154)

(−,−) : e−h̃2 cosh(−2J̃ + h̃) = e2g+J̃ ′−h̃′ (9.155)

The road to solving these is a bit tricky, but here is one approach. Multiply the
first and the third, which gives

4 cosh(2J̃ + h̃) cosh(−2J̃ + h̃) = e4g+2J̃′ (9.156)

Multiply by the square of the second equation and we get

16 cosh(2J̃ + h̃) cosh(−2J̃ + h̃) cosh2(h̃) = e8g (9.157)

which gives us g. We can also divide the product of the first and third by the
square of the second, and now we find

cosh(2J̃ + h̃) cosh(−2J̃ + h̃)
cosh2(h̃)

= e4J̃ ′ (9.158)
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which gives us J̃ ′. Finally, we divide the first and third equation to get

e2h̃ cosh(2J̃ + h̃)
cosh(−2J̃ + h̃)

= e2h̃′ (9.159)

which gives us h̃′. The solutions are

J̃ ′(J̃ , h̃) =
1
4

log

(
cosh(2J̃ + h̃) cosh(−2J̃ + h̃)

cosh2(h̃)

)
(9.160)

h̃′(J̃ , h̃) = h̃ +
1
2

log

(
cosh(2J̃ + h̃)

cosh(−2J̃ + h̃)

)
(9.161)

g(J̃ , h̃) =
1
16

log
(
16 cosh(2J̃ + h̃) cosh(−2J̃ + h̃) cosh2(h̃)

)
(9.162)

We are now able to relate the original partition function to a new partition
function describing half the particles on twice the length scale. Because of our
redefining the variables, the partition function depends on the variables N , J̃ ,
and h̃. This is equivalent to the original set N, T, h. We have redefined the
temperature scale by using βJ and redefined the field by using βh. Hence the
partition function is a function Z(N, J̃, h̃). We have expressed this in the form of
a partition function with new coupling constants and fields at half the number
of particles, We needed to add an energy shift. This translates to

Z(N, J̃, h̃) = eNg(J̃,h̃)Z(
1
2
N, J̃ ′, h̃′) (9.163)

This equation relates the properties of the original system to the properties of
a system with double the length scale, and renormalized interaction strengths.
Because the partition functions are directly related, thermodynamic properties
are similar! Our goal is now to repeat this process over and over again. We
have

Z(
1
2
N, J̃ ′, h̃′) = e

1
2 Ng(J̃′,h̃′)Z(

1
4
N, J̃”, h̃”) (9.164)

Note that the functional forms g(x, y), J̃”(x, y), and h̃”(x, y) are the same as
before!

When we apply this procedure repeatedly we therefore find

Z(N, J̃, h̃) = eNg(J̃,h̃)e
1
2 Ng(J̃ ′,h̃′) · · ·Z(0, J̃∞, h̃∞) (9.165)

The free energy follows from log(Z) = −βG. Therefore we have

−βG = N

(
g(J̃ , h̃) +

1
2
g(J̃ ′, h̃′) +

[
1
2

]2

g(J̃”, h̃”) + · · ·
)

(9.166)
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if the series converges.
At this point we have established a general procedure relating the partition

function of a system to a partition function containing the combined effects of
the spins in a block of two. The coupling constants J̃ and h̃ changed values,
however. They had to be renormalized in order for the expressions to be valid.
Hence the new system is different from the old one, since it is not described
by the same Hamiltonian. It is possible that in certain cases both J̃ ′ = J̃ and
h̃′ = h̃. In that case the old and new system do represent the same physics, no
matter how many times we apply the demagnification operation. Critical points
therefore correspond to fixed points of the renormalization formulas. One has
to keep in mind that a fixed point does not necessarily correspond to a critical
point; there are more fixed points than critical points.

The one-dimensional Ising model depends only on two coupling constants.
These represent the interaction energy between the spins and the energy of a
spin in an external field. Both constants are scaled with respect to kBT . It is in
general always possible to scale the constants with respect to the temperature,
since the partition function always combines β and H in a product. In a general
model, one has a number of coupling constants, and a search for critical points
corresponds to a search for fixed points in a many-dimensional space. The
easiest example of such a search is again for the one-dimensional Ising model,
this time without an external field. Hence h̃ = 0 and 9.161 shows that h̃′ = 0
too. In every step of the renormalization procedure the coupling constant for
the external field remains zero. The renormalization equation 9.160 is now very
simple:

J̃ ′(J̃ , 0) =
1
2

log cosh(2J̃) (9.167)

Since cosh(x) 6 ex we see that log cosh(2J̃) 6 log e2J̃ = 2J̃ and hence
0 6 J̃ ′ 6 J̃ . This also implies g(J̃ ′, 0) 6 g(J̃ , 0), and hence the series 9.166 for
the free energy converges and is bounded by

∑
k

(
1
2

)k
g(J̃ , 0) = 2g(J̃ , 0).

Suppose we start with a coupling constant J̃ = J̃ (0). Each iteration adds
a prime to the value according to the equation 9.160 and after k iterations we
have the value J̃ = J̃ (k). If we keep going, we arrive at limk→∞ J̃ (k) = J̃ (∞).
Because of the limiting conditions we have 0 6 J̃ (∞) 6 J̃ .

Since the function g is also decreasing, we can get a lower bound on the free
energy by using the infinite value, and we find

2Ng(J̃ (∞), 0) 6 −βG 6 2Ng(J̃ (0), 0) (9.168)

It is clear that the value of J̃ (∞) depends on the initial value of J̃ and hence
on the temperature T . The possible values of J̃ (∞) can be found by taking the
limit in 9.160 on both sides. That leads to

J̃ (∞) =
1
2

log
(
cosh(2J̃ (∞))

)
(9.169)
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This equation has solutions J̃ (∞) = 0 and J̃ (∞) = ∞. These solutions are
called the fixed points of the equation. If we start with one of these values,
the scaling transformations will not change the values. Hence they represent
physical situations that are length independent.

In the case J̃ (∞) = 0 we find that the free energy is given by

−βG = 2N
1
4

log(4) = log(2N ) (9.170)

The right hand side is equal to the entropy of a completely disordered chain
divided by the Boltzmann constant. Therefore we have G = −TS, as expected
for large temperatures or zero coupling constant.

In the case J̃ (∞) = ∞ we find that the free energy is given by

−βG = 2N
1
4

log(2e2J̃(∞)
) ⇒ G ≈ −NkBT J̃ = −NJ (9.171)

The right hand side is equal to the energy of a completely ordered chain, which
happens if the temperature is zero of the coupling constant is infinity.

If we start with an arbitrary value of J̃ the next value will be smaller and so
on. So we will end at the fixed point zero. The only exception is when we start
exactly at infinity, then we stay at infinity. Hence we can say the following. If
we start at a fixed point, we remain at that point. If we make a small deviation
from the fixed point for our starting value, we always end up at zero. Therefore,
J̃ (∞) = 0 is a stable fixed point and J̃ (∞) = ∞ is an unstable fixed point.

The stable fixed point J̃ = 0 corresponds to T = ∞. At an infinite temper-
ature any system is completely disordered and the states of the individual spins
are completely random and uncorrelated. If we average random numbers the
results will remain random and a system at an infinite temperature will look the
same for any magnification. This fixed point is therefore a trivial fixed point
and is expected to occur for any system. The same is true for the second fixed
point in our simple model, which corresponds to T = 0. At zero temperature all
spins are ordered and again the system looks the same under any magnification.
It is again a fixed point which will always show up. It does not correspond to a
critical point since it does not divide the temperature range in two parts, there
are no negative temperatures. Close to zero temperature the effects of this fixed
point are noticeable, however, and show up in a divergence of the correlation
length to infinity at T = 0. Note that at infinite temperature the correlation
length becomes zero.

What we do in renormalization group theory is to replace one spin by the
effective value of a block of spins. That changes the length scales of our prob-
lem, and in general changes our observations. That is not true, however, at the
critical point. In that case the correlation length is infinity and repeated trans-
formations will give the same results. Therefore , the critical point will show up
as a fixed point in the scaling equations. The other case where changing length
scales does not affect the physics is when the correlation length is zero. Hence
we always have a fixed point corresponding to zero correlation length or infinite
temperature.
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Note that we cannot go any further in renormalization than to have one
spin left. If at this point values are converged, fine, but if not, we see finite
size effects. Only in the thermodynamic limit do we get a sharp transition
temperature independent of the initial conditions. For a finite sample we always
find a small range of fixed points.

The application of renormalization theory to a one-dimensional problem is
often straightforward because a one-dimensional space has a very simple topol-
ogy. In more dimensions one has to deal with other complications. For example,
we could apply the same set of ideas to a two-dimensional Ising model. The sites
are numbered (i, j) and the easiest geometry is that of a square lattice where
the actual lattice points are given by ~R = a(ix̂ + jŷ). We could try to sum first
over all sites with i + j odd. The remaining sites with i + j even form again a
square lattice, but with lattice constant a

√
2. Suppose we start with a model

with only nearest-neighbor interactions. It is easy to see that after one step in
this renormalization procedure we have a system with nearest and next-nearest
neighbor interactions! As a result we have to consider the Ising model with
all interactions included and in the end find fixed points which correspond to
nearest neighbor interactions only. Real life is not always as easy as the current
section seemed to suggest. But if we do it correctly, we will find that the two-
dimensional Ising model has a non-trivial fixed point even for h = 0. The value
J̃fp is related to Tc by J̃fp = J

kBTc
.

If renormalization theory would only give critical temperatures, its value
would be quite small. The most important aspect of this theory, however, is
that it also yields critical exponents. Suppose that J̃∗ and h̃∗ are the values of
the coupling parameters at a critical point. The critical exponents are related
to the behavior of the renormalization group equations near the critical point.
Assume that we are close to the critical point and that we have J̃ = J̃∗ + δJ̃ ,
h̃ = h̃∗ + δh̃ with δJ̃ and δh̃ small. In first approximation we use a linearized
form, valid for small deviations, and we have

δJ̃ ′ =

(
∂J̃ ′

∂J̃

)
δJ̃ +

(
∂J̃ ′

∂h̃

)
δh̃ (9.172)

and

δh̃′ =

(
∂h̃′

∂J̃

)
δJ̃ +

(
∂h̃′

∂h̃

)
δh̃ (9.173)

where the partial derivatives are calculated at the fixed point.
The deviations in the coupling constants from the fixed point are combined in

a two-vector ~d. If we have more coupling constants, we have a larger dimensional
space, so it is easy to generalize to include a larger number of coupling constants.
Hence near a critical point we have

~d′ = M~d (9.174)
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where M is the Jacobian matrix of the renormalization group transformation.
The eigenvalues of this matrix determine the stability of the critical point. If an
eigenvalue has an absolute value less than one, the direction of the corresponding
eigenvector corresponds to a direction in which the fixed point is stable. The
deviations will become smaller in this direction. Eigenvalues larger than one
correspond to unstable directions. A stable fixed point has all eigenvalues less
than one.

For the one-dimensional Ising chain we have
(

∂J̃ ′

∂J̃

)
=

1
2

sinh(2J̃ + h̃)
cosh(2J̃ + h̃)

+
1
2

sinh(2J̃ − h̃)
cosh(2J̃ − h̃)

(9.175)

(
∂J̃ ′

∂h̃

)
=

1
4

sinh(2J̃ + h̃)
cosh(2J̃ + h̃)

− 1
4

sinh(2J̃ − h̃)
cosh(2J̃ − h̃)

− 1
2

sinh(h̃)
cosh(h̃)

(9.176)

(
∂h̃′

∂J̃

)
=

sinh(2J̃ + h̃)
cosh(2J̃ + h̃)

− sinh(2J̃ − h̃)
cosh(2J̃ − h̃)

(9.177)

(
∂h̃′

∂h̃

)
= 1 +

1
2

sinh(2J̃ + h̃)
cosh(2J̃ + h̃)

+
1
2

sinh(2J̃ − h̃)
cosh(2J̃ − h̃)

(9.178)

and the matrix M for the one-dimensional Ising model at the point (J̃ , 0) is
simple

(
tanh(2J̃) 0

0 1 + tanh(2J̃)

)
(9.179)

At the critical point (0, 0) the form is simply
(

0 0
0 1

)
(9.180)

This means that along the J̃ direction the critical point (0, 0) is very stable;
first order deviations disappear and only higher order terms remain. In the h̃
direction the deviations remain constant.

Suppose that we have found a fixed point J̃∗ for a more-dimensional Ising
model at h = 0. Since the problem is symmetric around h = 0 the direction
corresponding to J̃ must be the direction of an eigenvector of the matrix M.
Suppose the corresponding eigenvalue is λ. For small deviations at constant
field h = 0 we can therefore write

δJ̃ ′ = λδJ̃ (9.181)

Now assume that we constructed this small deviation in J̃ by changing the
temperature slightly. Hence we assume that δJ̃ = α(T − Tc) where α is a
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constant. The deviation δJ̃ ′ corresponds to a different temperature T ′ according
to δJ̃ = α(T ′ − Tc) and we have

(T ′ − Tc) = λ(T − Tc) (9.182)

On the other hand the correlation length depends on the temperature via
ξ(T ) = c(T − Tc)−ν . By construction the primed system corresponds to a re-
scaled system with correlation length ξ

f . The scaling factor f is equal to two in
our example above. Hence we also have

(T ′ − Tc)−ν = (T − Tc)−ν 1
f

(9.183)

combining these two results gives

(T − Tc)−νλ−ν = (T − Tc)−ν 1
f

(9.184)

or λν = f . Hence if we calculate the matrix M at the fixed point the
eigenvalues are related to critical exponents. We could also vary h to get similar
results. The one dimensional Ising model is again too simple. The fixed points
are J̃∗ = 0 or ∞ with a value of λ = 0 or 1. If λ approaches zero from
above the value of ν approaches zero. This means that the correlation length is
independent of the temperature. In other words, the correlation length is not
important and can be taken to be zero for all practical purposes, as expected.On
the other hand, for the other fixed point λ approaches one from above, and this
means that ν goes to infinity. The correlation length increases faster than a
power law, which is what we already found from the exact results.

9.8 Problems for chapter 9

Problem 1.

Consider the one-dimensional Ising model in a cluster approximation. A
cluster contains a central atom 0 and the neighboring sites j = ±1.

A. Calculate < σ0σj > in this approach.
B. Assume that there is an additional potential in this model of the form

V = λ
∑

j=±1 σ0σj . Show that we indeed have
(

∂G
∂λ

)
=< V >λ.

Problem 2.

Suppose the earth magnetic field is due to a linear chain of atoms with
spin one-half polarized along the chain. Take J = 1 eV and N = 1016. Use
the results for the one-dimensional Ising model to estimate the time between
spontaneous reversals of the earth magnetic field.
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Problem 3.

Evaluate 〈σ0σi〉 in the Bethe cluster approximation for h = 0. Use this
expression to calculate the free energy for T > Tc. Derive the value of the
critical exponent α.

Problem 4.

Consider a one-dimensional chain of spin one particles. Use the transfer
matrix method to obtain the free energy of this system.
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Appendix A

Solutions to selected
problems.

A.1 Solutions for chapter 1.

Problem 4.

There are several ways to attack this problem. Use a computer, or use the
formula in the notes:

N ! = NNe−N
√

2πNe−
1
12

1
N +R(N)

where R(N) is of order N−2.
The values we use in this problem are

(I) N ! ≈ NN

(II) N ! ≈ NNeN

(III) N ! ≈ NNe−N
√

N

(IV) N ! ≈ NNe−N
√

2πN

This gives for the relative error ε = |1− approximation
N ! |:

(I) ε1 ≈ |1− eN 1√
2πN

e+ 1
12

1
N−R(N)|

(II) ε2 ≈ |1− 1√
2πN

e+ 1
12

1
N−R(N)|

(III) ε3 ≈ |1− 1√
2π

e+ 1
12

1
N−R(N)|

(IV) ε4 ≈ |1− e+ 1
12

1
N−R(N)|

229
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Therefore in the limit N →∞ we have

(I) lim
N→∞

ε1 = ∞

(II) lim
N→∞

ε1 = 1

(III) lim
N→∞

ε1 = 1− 1√
2π

(IV) lim
N→∞

ε1 = 0

and only in the last case will the relative error become small. For a 1% error
we need e+ 1

12
1
N−R(N) = 0.99 or approximately (using ex ≈ 1 + x ) we need

1
12

1
N = 0.01 which will be true if N > 8.

Problem 5.

This is a problem which shows how probabilities change when you add informa-
tion. This one is called the principle of restricted choice. Bridge players should
be familiar with it!
Label the door you chose with A, the others with B and C. When you make
your first choice, your chance of finding the car is of course 1

3 . Hence there are
three equally probable scenarios.

(1) A = car, B = 0, C = 0 Probability 1
3

(2) A = 0, B = car, C = 0 Probability 1
3

(3) A = 0, B = 0, C = car Probability 1
3

Next, the game show host points at a door. Now there are six scenarios:

(1a) A = car, B = 0, C = 0 Host chooses B Probability 1
6

(1b) A = car, B = 0, C = 0 Host chooses C Probability 1
6

(2a) A = 0, B = car, C = 0 Host chooses B Probability 1
6

(2b) A = 0, B = car, C = 0 Host chooses C Probability 1
6

(3a) A = 0, B = 0, C = car Host chooses B Probability 1
6

(3b) A = 0, B = 0, C = car Host chooses C Probability 1
6

which are all equally probable. But now we introduce the fact that the host
cannot open the door behind which the car is hidden, which eliminates sequences
2a and 3b. In scenario 2 where the car is behind door B, the host has to choose
door C! His choice is restricted! Hence the four possible sequences of events
are:
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(1a) A = car, B = 0, C = 0 Host chooses B Probability 1
6

(1b) A = car, B = 0, C = 0 Host chooses C Probability 1
6

(2b) A = 0, B = car, C = 0 Host chooses C Probability 1
3

(3a) A = 0, B = 0, C = car Host chooses B Probability 1
3

which are not all equally probable anymore. If we now label the door which the
host chose by B, we only have sequences 1a and 3a and we have

(1a) A = car, B = 0, C = 0 Host chooses B Probability 1
3

(3a) A = 0, B = 0, C = car Host chooses B Probability 2
3

and therefore the probability that the car is behind the other door is twice as
large as the probability of the car being behind the original door. Another
way of saying this is that when the car is behind the original door A the host
will choose door B only half the time and door C the other half. If the car is
behind door C he has to choose door B. This reduces the probability in case 1
by one-half.

Problem 6.

Define the number of atoms with spin si = s to be Ns. Therefore:

S∑

s=−S

Ns = N

S∑

s=−S

sNs = M

and the number of ways to find the set of values N−S , N−S+1, · · · , NS−1, NS is

N !
N−S !N−S+1! · · ·NS−1!NS !

which leads to

g(N, M) =
∑

N−S ,N−S+1,···,NS−1,NS

N !
N−S !N−S+1! · · ·NS−1!NS !

δ∑S
s=−S Ns,Nδ∑S

s=−S sNs,M

where we used the Kronecker delta to limit the sums to the right cases.
We now approximate the factorials, keeping only terms that depend on N in the
exponent, N ! ≈ NNe−N , and get



232 APPENDIX A. SOLUTIONS TO SELECTED PROBLEMS.

g(N, M) =
∑

N−S ,N−S+1,···,NS−1,NS

(
N

N−S

)N−S

· · ·
(

N

NS

)NS

δ∑S
s=−S Ns,Nδ∑S

s=−S sNs,M

In the limit N →∞ the log of the multiplicity function is again approximated
by the log of the largest term, and hence we need to find the maximum of

T (N−S , N−S+1, · · · , NS−1, NS) =
S∑

s=−S

Ns(log(N)− log(Ns))

with the conditions
∑S

s=−S Ns = N and
∑S

s=−S sNs = M . This can be done
by introducing two Lagrange multiplyers, and we need to minimize:

U(N−S , N−S+1, · · · , NS−1, NS , α, β) =

S∑

s=−S

Ns(log(N)− log(Ns)) + α(
S∑

s=−S

Ns −N) + β(
S∑

s=−S

sNs −M)

Taking the derivatives with respect to the variables Ns and equating these to
zero gives:

(log(N)− log(Ns))− 1 + α + βs = 0

or

Ns = Ne−1+α+βs

with α and β determined from

N =
S∑

s=−S

Ns = N

S∑

s=−S

e−1+α+βs

M = xN =
S∑

s=−S

Ns = N

S∑

s=−S

se−1+α+βs

Therefore, the value of T at this point is:

Tmax =
S∑

s=−S

Ns(1− α− βs) = (1− α)N − βxN

which is proportional to N indeed. In order to find how this depends on x we
need to solve the equations for α and β, which are (after dividing by N):

1 = e−1+α
S∑

s=−S

e+βs
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x = e−1+α
S∑

s=−S

se+βs

The derivatives with respect to x of the first equation is :

0 = e−1+α dα

dx

S∑

s=−S

e+βs + e−1+α
S∑

s=−S

se+βs dβ

dx

which gives

0 =
dα

dx
+ x

dβ

dx

Also we then get

dTmax

dx
= −dα

dx
N − βN − x

dβ

dx
N = −βN

which shows that this term is maximal for β = 0 and this gives immediately
x = 0. When β is small the equations for α and β give

1 = e−1+α
S∑

s=−S

(1 + βs) = e−1+α(2S + 1)

x = e−1+α
S∑

s=−S

s(1 + βs) =
1

2S + 1
β

S∑

s=−S

s2

which shows that α is constant and β ∝ x, and hence

Tmax = log(2S + 1)N − cx2N

with c = 2S+1∑S
s=−S s2 , which is again a Gaussian distribution for the multiplicity

function:

g(N,x) ≈ g(N, 0)e−cNx2

Problem 7.

Twelve physics graduate students go to the bookstore to buy textbooks. Eight
students buy a copy of Jackson, six students buy a copy of Liboff, and two
students buy no books at all. What is the probability that a student who
bought a copy of Jackson also bought a copy of Liboff? What is the probability
that a student who bought a copy of Liboff also bought a copy of Jackson?

We have two students who buy no book, two students who only buy Liboff, four
students who only buy Jackson, and four students who buy both books. Therefore
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the probability that a student who bought a copy of Jackson also bought a copy
of Liboff is four out of eight, or 50%. Similarly, the probability that a student
who bought a copy of Liboff also bought a copy of Jackson is four out of six, or
66.67%.

Problem 8.

For an ideal gas we have U = 3
2NkBT , where N is the number of particles. Use

the relation between the entropy S(U,N) and the multiplicity function g(U,N)
to determine how g(U,N) depends on U .

From

1
T

=
(

∂S

∂U

)

N

we find

(
∂S

∂U

)

N

=
3
2
NkB

1
U

which gives

S =
3
2
NkB log(U) + C(N)

and with

g(U,N) = e
S

kB

we get

g(U,N) = C ′(N)U
3
2 N

Does this make sense? The kinetic energy of one particle is ~2k2

2m and hence the
total kinetic energy is given by:

Ek =
~2

2m

N∑

i=1

z∑

j=x

k2
ij

A surface of constant energy U is a hypersphere in 3N dimensions, with radius
R given by U = ~2R2

2m . The number of states with a given energy is proportional
to the surface area of that sphere, which is proportional to R3N−1. For large N
we ignore the -1 and hence the area is proportional to U

3
2 N .

Problem 9.
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The energy eigenstates of a harmonic oscillator are εn = ~ω(n + 1
2 ) for n =

0, 1, 2, · · · Consider a system of N such oscillators. The total energy of this
system in the state {n1, n2, · · · , nN} is

U =
N∑

i=1

εni
= (M +

1
2
N)~ω

where we have defined

M =
N∑

i=1

ni

Calculate the multiplicity function g(M, N). Hint: relate g(M, N) to g(M, N +
1) and use the identity

m∑

k=0

(
n + k

n

)
=

(
n + 1 + m

n + 1

)

Show that for large integers g(M, N) is a narrow Gaussian distribution in x =
M
N .

It is easy to show that

g(M, N) =
M∑

m=0

g(m,n)g(M −m,N − n)

because the states of parts of the system are independent. We also know that

g(M, 1) = 1

because for one particle there is only one way of obtaining M units of energy.
Therefore

g(M,N + 1) =
M∑

m=0

g(m,N)

Comparing with the hint we see that

g(M, N) =
(

n + M

n

)

for some value of n linearly related to N , or n = N + n0. Because g(M, 1) = 1
and

(
0+M

0

)
= 1 we find that n = N − 1 and hence

g(M, N) =
(

N − 1 + M

N − 1

)

Next we take the logarithms:
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log g(M, N) = log(N − 1 + M)!− log(N − 1)!− log M !

and using Stirling

log N ! = N log(N)−N +
1
2

log(2πN)

we arrive at

log g(M, N) = (N − 1 + M) log(N − 1 + M)− (N − 1) log(N − 1)−M log(M)

−1
2

log(2π) +
1
2

log(
N − 1 + M

(N − 1)M
)

Insert M = xN and replace N − 1 by N :

log g(M,N) = N(1 + x) log(N(1 + x))−N log N − xN log(xN)

−1
2

log(2π) +
1
2

log(
1 + x

xN
)

log g(M, N) = N(1 + x) log(1 + x)− xN log(x)

−1
2

log(2π) +
1
2

log(
1 + x

xN
)

The maximum occurs if ∂
∂xg = 0 which gives:

N log(1 + x)−N log(x) +
1
2

(
1

1 + x
− 1

x

)
= 0

Consider the function:

f(x) = N log(x) +
1
2

1
x

and we need to solve

f(x + 1) = f(x)

The slope of the function f(x) is given by:

df

dx
=

N

x
− 1

2
1
x2

which is positive for x > 1
2N . Because g = f(x + 1) − f(x) this shows that g

does not have a maximum. The largest value is at x = ∞, which makes sense
if you think about the physics. But my apologies for making the last part of the
problem misleading.
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A.2 Solutions for chapter 2.

Problem 4.

Assume that the protons are labelled by i, with i running from 1 to N, and that
the spin of the proton is siµ. The energy of such a state is

∑
i(−siµH). The

partition function is

Z(T ) =
∑

s1,···,sN

e
1

kT

∑
i siµH

which is

Z(T ) = (Z1(T ))N

Z1(T ) = e−
µH
kT + e+ µH

kT

The internal energy of the sample is U = −∑
i siµH, which is proportional to

the difference in population. Therefore the power absorbed is proportional to
U. We also have:

U = kT 2 ∂

∂T
log(Z(T ))

and hence

U = kT 2N
e+ µH

kT − e−
µH
kT

e+ µH
kT + e−

µH
kT

(−µH

kT 2

)

When µH ¿ kT we replace the exponents by ex = 1 + x and get

U ≈ −NµH
+µH

kT − (−µH
kT )

2
= −N

µ2H2

kT

and the power is inversely proportional to T.

Problem 5.

(a) At low temperature Ē ≈ Nε1, all particles in ground state. At high temper-
ature all states are equally probable, and Ē ≈ N

2 (ε1 + ε2). In thermodynamics
we have seen that

(
∂U
∂T

)
V
→ 0 for T → 0, because the entropy becomes zero.

Therefore the curve Ē(T ) starts with horizontal slope at T = 0 bends upwards,
bends down again and approaches the high temperature limit in an asymptotic
fashion. We expect the change from low to high temperature behavior to take
place near a temperature T0 given by ε2−ε1 = kT0, because now we have enough
thermal energy to make the transition from state 1 to state 2.
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(b) Because CV =
(

∂U
∂T

)
V

we start at zero for low temperature, go through a
maximum near T0 and approach zero again for high temperature.
(c) Like in the previous problem we can write the partition function in the
following manner, by defining a variable si = ±1 for each particle by εi =
1
2 (ε1 + ε2) + si

1
2 (ε2 − ε1) = A + Bsi. This gives

Z(T ) =
∑

s1,···,sN

e−
1

kT

∑
i(A+Bsi)

which is

Z(T ) = e−
NA
kT (Z1(T ))N

Z1(T ) = e
B

kT + e−
B

kT

Using

U = kT 2 ∂

∂T
log(Z(T ))

we get

U = kT 2 ∂

∂T

(
−NA

kT
+ N log(Z1)

)

or

U = NA + NkT 2 e
B

kT − e−
B

kT

e
B

kT + e−
B

kT

(−B

kT 2

)

which leads to

U = N(A−Bf(T ))

or

U = N(
1
2
(ε1 + ε2)− 1

2
(ε2 − ε1)f(T ))

with

f(T ) =
e

B
kT − e−

B
kT

e
B

kT + e−
B

kT

This gives the correct limits indeed. f(0) = 1 which gives U(0) = Nε1. f(∞) =
0 which gives U(∞) = 1

2 (ε1 + ε2).
Also

CV = −N

2
(ε2 − ε1)f ′(T )

and using
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d

dx

ex − e−x

ex + e−x
= 1− (ex − e−x)2

(ex + e−x)2
=

4
(ex + e−x)2

we get

CV =
4NB2

kT 2

1

(e
B

kT + e−
B

kT )2

For T to zero this approaches zero exponentially, for T to infinity this goes to
zero inverse quadratically, and the approaching zero confirms what we found in
(b).
We can write CV = Nkg( B

kT ) with

g(x) =
4x2

(ex + e−x)2

g′(x) =
8x

(ex + e−x)2
− 4x2(ex − e−x)

(ex + e−x)3
= g(x)

(
2
x
− ex − e−x

ex + e−x

)

which is zero if

0 =
2
x
− ex − e−x

ex + e−x

which happens when x is somewhat larger than 2, or kT0 ≈ 1
4 (ε2 − ε1), more or

less as in (b).

Problem 6.

Each positive ion can be in one of four states. If the central atom is at the origin,
the x coordinates of these states are − 1

2a for i=1,2 and +1
2a for i=3,4. The

component of the dipole along the x direction is − 1
2ea and + 1

2ea respectively,
and the energies are + 1

2eaE and − 1
2eaE. The state of atom j is therefore given

by a number sj which runs from 1 to 4, and the partition function is

Z(T ) =
∑

s1,···,sN

e−
1

kT

∑
j ε(sj)

Again, the energies are independent and we get

Z(T ) = (Z1(T ))N

Z1(T ) = 2
(
e+ eaE

2kT + e−
eaE
2kT

)

The probability of finding a state with quantum numbers s1, · · · , sN is therefore:

Prob(s1, · · · , sN ) =
1

Z(T )
e−

1
kT

∑
j ε(sj)
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and the average dipole moment is

< P >=
∑

s1,···,sN

∑

j

P (sj)Prob(s1, · · · , sN )

which simplifies to

< P >= N
( 1
2ea)e+ eaE

2kT + (− 1
2ea)e−

eaE
2kT

e+ eaE
2kT + e−

eaE
2kT

or

< P >=
1
2
Nae tanh(

eaE

2kT
)

which reduces for small fields, or eaE ¿ 2kT to

< P >≈ NE
a2e2

4kT

Problem 7.

The probability of finding a system in a state s is Ps. In this case the entropy
of the system is S = −kB

∑
s

Ps log(Ps). Assume that the system consists of two

independent subsystems and that the state s is the combination of subsystem 1
being in state s1 and system 2 being in state s2. Use the formula for the entropy
given above to show that S = S1 + S2.

The state of the system is given by the states of the subsystems, s = (s1, s2).
Because the systems are independent we have Ps = Ps1Ps2 and hence:

S = −kB

∑
s

Ps log(Ps) = −kB

∑
s1,s2

Ps1Ps2 log(Ps1Ps2)

S = −kB

∑
s1

∑
s2

Ps1Ps2 (log(Ps1) + log(Ps1))

With
∑

Psi = 1 this gives

S = −kB

∑
s1

Ps1 log(Ps1) +
∑
s2

Ps2 log(Ps1) = S1 + S2

Problem 8.

The energy eigenvalues for a single particle in a given potential are εn. These
energy values are independent of how many other particles are present. Show
that the partition function Z(T, N) obeys the relation Z(T,N) = (Z(T, 1))N .
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For one particle we have:

Z(T, 1) =
∑
n1

e−βεn1

When we have N particles they are in states n1, n2, · · · , nN and we have

Z(T,N) =
∑
n1

∑
n2

· · ·
∑
nN

e−β(εn1+εn2+···+εnN )

Which is equal to :

Z(T,N) =
∑
n1

e−βεn1

∑
n2

e−βεn2 · · ·
∑
nN

e−βεnN = (Z(T, 1))N

Problem 9.

The energy eigenvalues of a system are given by 0 and ε+n∆ for n = 0, 1, 2, · · ·.
We have both ε > 0 and ∆ > 0. Calculate the partition function for this system.
Calculate the internal energy and the heat capacity. Plot the heat capacity as
a function of temperature for 0 < kBT < ε for (a) ∆ À ε, (b) ∆ = ε , and (c)
∆ ¿ ε.

Z = eβ0 +
∞∑

n=0

e−β(ε+n∆) = 1 + e−βε
∑

n

e−nβ∆

The sum can be done using
∑

n rn = 1
1−r and gives:

Z = 1 +
e−βε

1− e−β∆
=

1 + e−βε − e−β∆

1− e−β∆

U = kBT 2 ∂

∂T
log(Z) = − ∂

∂β
log(Z)

U =
εe−βε −∆e−β∆

1 + e−βε − e−β∆
+

∆e−β∆

1− e−β∆

U = ε
e−βε

1 + e−βε − e−β∆
+ ∆

(
e−β∆

1− e−β∆
− e−β∆

1 + e−βε − e−β∆

)

We have three cases:

∆ À ε ⇒ U ≈ ε
e−βε

1 + e−βε
= ε

1
eβε + 1

∆ = ε ⇒ U = ε
e−βε

1− e−βε
= ε

1
eβε − 1

∆ ¿ ε ⇒ U ≈ ε + kBT (for kBT À ∆)
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Finally, we have CV =
(

∂U
∂T

)
= −kBβ2

(
∂U
∂β

)
and hence in these cases we find:

∆ À ε ⇒ CV ≈ kB(βε)2
eβε

(eβε + 1)2

∆ = ε ⇒ CV = kB(βε)2
eβε

(eβε − 1)2

∆ ¿ ε ⇒ CV ≈ kB(for kBT À ∆)

A.3 Solutions for chapter 3

Problem 3.

A system contains an ideal gas of atoms with spin 1
2 in a magnetic field B(~r).

The concentration of the spin up (down) particles is n↑(~r) ( n↓(~r) ). The
temperature is T.

(A) Evaluate the total chemical potential for the spin up and down particles.

The magnetic moment of an atom with spin ~S is ~m = γµB
~S. Assuming

that the quantization axis is along the B-field, and that the energy per atom
is Umag = −~m · ~B, we get:

µ↑(~r) = kBT log(
n↑(~r)
nQ(T )

)− 1
2
γµBB(~r)

µ↓(~r) = kBT log(
n↓(~r)
nQ(T )

) +
1
2
γµBB(~r)

(B) These two chemical potentials have to be the same and independent of ~r.
Explain why.

If either chemical potential were position dependent, there would be no
equilibrium and a flow of particles would result. Hence both the spin-up
and spin-down chemical potentials are independent of position. If these
two potentials were not the same, the spins of the atoms would flip, and
again that would be a non equilibrium situation.

(C) Calculate the magnetic moment of this gas as a function of position.

µ = kBT log(
n↑(~r)
nQ(T )

)− 1
2
γµBB(~r)

gives
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n↑(~r) = nQ(T )e
1

kBT (µ+ 1
2 γµBB(~r))

and

µ = kBT log(
n↓(~r)
nQ(T )

) +
1
2
γµBB(~r)

gives

n↓(~r) = nQ(T )e
1

kBT (µ− 1
2 γµBB(~r))

Therefore, the magnetization density is:

m(~r) = γµB
1
2
(n↑(~r)−n↓(~r)) = γµB

1
2
nQ(T )e

µ
kBT

(
e

γµBB(~r)
2kBT − e

− γµBB(~r)
2kBT

)

or

m(~r) = γµBnQ(T )e
µ

kBT sinh(
γµBB(~r)

2kBT
)

(D) Show that the concentration of magnetic particles is high in regions with
a large magnetic field.

n(~r) = n↑(~r) + n↓(~r) = nQ(T )e
µ

kBT

(
e

γµBB(~r)
2kBT + e

− γµBB(~r)
2kBT

)

or

n(~r) = 2nQ(T )e
µ

kBT cosh(
γµBB(~r)

2kBT
)

which is clearly largest when B is largest.

P.S. Also note that when γµBB(~r) ¿ 2kBT we have:

n(~r) ≈ 2nQ(T )e
µ

kBT = n0

which is constant and defines the chemical potential. The magnetization
density is:

m(~r) ≈ γµBnQ(T )e
µ

kBT
γµBB(~r)

2kBT
= n0

γ2µ2
B

4kBT
B(~r)

which is the famous Curie-Weiss law.
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Problem 4.

The state of a many body system is characterized by two quantum numbers, n
and m. The possible values of the quantum number n are 0, 1, 2, · · · ,∞, while
the values of m are in the range 0, 1, · · · , n. The energy of the system in the state
(n,m) is n~ω and the number of particles is m. Evaluate the grand partition
function for this system.

Z =
∞∑

n=0

n∑
m=0

e−β(n~ω−µm)

Z =
∞∑

n=0

e−nβ~ω
n∑

m=0

emβµ

Z =
∞∑

n=0

e−nβ~ω 1− e(n+1)βµ

1− eβµ

Z =
1

1− eβµ

∞∑
n=0

e−nβ~ω − eβµ

1− eβµ

∞∑
n=0

e−nβ(~ω−µ)

Z =
1

1− eβµ

1
1− e−β~ω −

eβµ

1− eβµ

1
1− eβ(µ−~ω)

or

Z =
1

1− eβµ

(
1

1− e−β~ω −
1

e−βµ − e−β~ω

)

Problem 5.

An ideal gas of atoms with mass m is contained in a cylinder that spins around
with angular frequency ω. The system is in equilibrium. The distance to the
axis of the cylinder is r. The radius of the cylinder is R. Calculate the density
of the gas as a function of r.

Reasoning similar to problem 1 .

µ = kBT log(
n(~r)

nQ(T )
) +

1
2
mω2r2

n(~r) = nQ(T )eβµe
− mω2

2kBT r2

Problem 6.

Extremely relativistic particles obey the relation E(~k) = ~c|~k|. Assume we have
a gas of these identical particles at low density, or n ¿ nQ(T ).



A.3. SOLUTIONS FOR CHAPTER 3 245

(A) Calculate the partition function Z1(T, V ) for N=1.

(B) Calculate Z(T, V, N).

(C) Calculate p(T, V, N), S(T, V, N), and µ(T, V,N).

Ignore spin

Z1(T, V ) =
∑

nx,ny,nz

e
− ~cπ

kBT L

√
n2

x+n2
y+n2

z

Transform to integral

~x =
~cπ

kBTL
(nx, ny, nz)

Z1(T, V ) =
(
~cπ

kBTL

)−3 1
8

∫
d3xe−x

where we extended the range of integration to all values of ~x,and not only one
octant.

Z1(T, V ) =
(

kBTL

~c2π

)3 ∫ ∞

0

4πx2dxe−x

Z1(T, V ) =
(

kBTL

~c2π

)3

8π = V

(
kBT

~c2π

)3

8π

This is allowed at low density, when the points in x-space are close together

Z(T, V, N) =
1

N !
V N

(
kBT

~c2π

)3N

(8π)N

F = −kBT log(Z) = −NkBT log(8π
V

N

(
kBT

~c2π

)3

)−NkBT

Where we used Stirling

p = −
(

∂F

∂V

)

T,N

=
NkBT

V

S = −
(

∂F

∂T

)

V,N

= NkB log(8π
V

N

(
kBT

~c2π

)3

) + 4NkB

µ =
(

∂F

∂N

)

T,V

= −kBT log(8π
V

N

(
kBT

~c2π

)3

)

Check:
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U = kBT 2 ∂

∂T
log(Z) = 3NkBT

TS − pV + µN = 3NkBT

Problem 7.

µ = kBT log(
n

nQ(T )
)

We need to include both inside and outside the bottle!

∆F = (µin − µout)∆N

when ∆N molecules move from outside to inside the bottle. This leads to

∆F = kBT log(
nin

nout
)∆N

This is only negative for ∆N > 0 when nin < nout, and hence when the outside
density is higher.

Problem 8.

This is Planck’s law for the distribution of photons. Assume that the volume
dependence is in the frequency ω, but that the frequency does not depend on
the number of photons present. This gives:

N(T, V, µ) =
[
e
~ω(V )
kBT − 1

]−1

which is independent of µ! The grand potential is therefore

Ω(T, V, µ) = Ω(T, V, 0)−
∫ µ

0

Ndµ′ = Ω(T, V, 0)−Nµ

and therefore the Helmholtz free energy is

F (T, V, N) = Ω(T, V, µ(N)) + Nµ(N) = Ω(T, V, 0)

which does not depend on N!!
Hence

µ =
(

∂F

∂N

)

T,V

= 0

which means that it does not cost energy to create and destroy photons, which
is, of course, what should happen in a cavity, where photons are always created
and destroyed.
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Problem 9

Z(T, µ) = 1 + e
− 1

kBT (ε1−µ) + e
− 1

kBT (ε2−µ) + e
− 1

kBT (ε1+ε2+I−2µ)

N(T, µ) =
1
Z

(
e
− 1

kBT (ε1−µ) + e
− 1

kBT (ε2−µ) + 2e
− 1

kBT (ε1+ε2+I−2µ)
)

(
∂N

∂T

)

µ

= − 1
Z2

(
∂Z
∂T

)

µ

(
e
− 1

kBT (ε1−µ) + e
− 1

kBT (ε2−µ) + 2e
− 1

kBT (ε1+ε2+I−2µ)
)

+

1
Z

(
(ε1 − µ)e−

1
kBT (ε1−µ) + (ε2 − µ)e−

1
kBT (ε2−µ) + 2(ε1 + ε2 + I − 2µ)e−

1
kBT (ε1+ε2+I−2µ)

) 1
kBT 2

ZkBT 2

(
∂N

∂T

)

µ

=

−N(T, µ)
(
(ε1 − µ)e−

1
kBT (ε1−µ) + (ε2 − µ)e−

1
kBT (ε2−µ) + (ε1 + ε2 + I − 2µ)e−

1
kBT (ε1+ε2+I−2µ)

)
+

(
(ε1 − µ)e−

1
kBT (ε1−µ) + (ε2 − µ)e−

1
kBT (ε2−µ) + 2(ε1 + ε2 + I − 2µ)e−

1
kBT (ε1+ε2+I−2µ)

)
=

(1−N(T, µ))(ε1 − µ)e−
1

kBT (ε1−µ) + (1−N(T, µ))(ε2 − µ)e−
1

kBT (ε2−µ)+

(2−N(T, µ))(ε1 + ε2 + I − 2µ)e−
1

kBT (ε1+ε2+I−2µ)

This can be negative if N(T, µ) > 1, which requires that the lowest energy state
is ε1 + ε2 + I, or I < −ε1 − ε2. In that case the binding energy between the
two particles (−I) is so strong that particles are most likely to be found two at
a time. In that case N(T = 0, µ) = 2 and this value can only become smaller
with temperature.

A.4 Solutions for chapter 4.

Problem 4.

The Maxwell distribution function fM is given by fM (ε;T, µ) = e
1

kBT (µ−ε).
Show that
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S(T, µ, V ) = NkB −
∑

o

fM (εo; T, µ) log(fM (εo;T, µ))

where the sum is over orbitals.

There are several ways to do this. For example:

< n >o= kBT

(
∂ log Zo

∂µ

)

T,V

< n >o= fM (εo; T, µ) = e
1

kBT (µ−εo)

(
∂ log Zo

∂µ

)

T,V

=
1

kBT
e

1
kBT (µ−εo)

log Zo = e
1

kBT (µ−εo) = fM (εo;T, µ)

Ω = −kBT
∑

o

log(Zo) = −kBT
∑

o

fM (εo; T, µ)

S = −
(

∂Ω
∂T

)

V,µ

= kB

∑
o

fM (εo; T, µ) + kBT
∑

o

∂

∂T
fM (εo;T, µ)

∑
o

fM (εo; T, µ) = N

∂

∂T
fM (εo; T, µ) = − 1

kBT 2
(µ−εo)e

1
kBT (µ−εo) = − 1

T
log(fM (εo; T, µ))fM (εo; T, µ)

which gives the result we need

Problem 5.

Consider a system of independent particles. The number of orbitals with energy
between E and E + dE is given by N(E)dE. The function N(E) is called the
density of states. One measures the expectation value of a certain operator O.
For a particle in an orbital o the value of the operator depends only on the
energy of the orbital, or Oo = O(εo). Show that in the thermodynamic limit
the ensemble average of the operator is given by

< O >=
∫ ∞

−∞
O(E)N(E)f(E;T, µ)dE

where f(E; T, µ) is the distribution function for these particles.
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< O > (T, µ, V ) =
∑

o

Oof(εo; T, µ)

< O > (T, µ, V ) =
∑

o

O(εo)f(εo; T, µ)

Define an energy mesh by Ei = idE where dE will be very small

< O > (T, µ, V ) =
∑

i

∑

o,Ei<εo<Ei+1

O(εo)f(εo; T, µ)

< O > (T, µ, V ) =
∑

i

∑

o,Ei<εo<Ei+1

O(Ei)f(Ei;T, µ)

< O > (T, µ, V ) =
∑

i

N(Ei)dEO(Ei)f(Ei; T, µ)

which leads to the integral

Problem 6.

The orbital energies of a system of Fermions are given by εi = i∆ , with ∆ > 0
and i = 1, 2, 3, · · · ,∞. These energies are non-degenerate. If the system has N
particles, show that the low temperature limit of the chemical potential gives
εF = (N + 1

2 )∆.

N =
∑

i

1

e
1

kBT (i∆−µ) + 1

At T = 0 the lowest N states are occupied:

N =
N∑

i=1

1

Taking the difference:

0 =
N∑

i=1

(
1

e
1

kBT (i∆−µ) + 1
− 1

)
+

∞∑

i=N+1

(
1

e
1

kBT (i∆−µ) + 1

)

N∑

i=1

(
1− 1

e
1

kBT (i∆−µ) + 1

)
=

∞∑

i=N+1

(
1

e
1

kBT (i∆−µ) + 1

)

N∑

i=1

(
1

e
− 1

kBT (i∆−µ) + 1

)
=

∞∑

i=N+1

(
1

e
1

kBT (i∆−µ) + 1

)

for small T the terms closest to i=N are the most important:
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(
1

e
− 1

kBT (N∆−µ) + 1

)
N∑

i=1

(
e
− 1

kBT (N∆−µ) + 1

e
− 1

kBT (i∆−µ) + 1

)
=

(
1

e
1

kBT ((N+1)∆−µ) + 1

) ∞∑

i=N+1

(
e

1
kBT ((N+1)∆−µ)

e
1

kBT (i∆−µ) + 1

)

When the temperature is small, the sums go to one and we have:

1

e
− 1

kBT (N∆−µ) + 1
=

1

e
1

kBT ((N+1)∆−µ) + 1

e
− 1

kBT (N∆−µ) + 1 = e
1

kBT ((N+1)∆−µ) + 1

− 1
kBT

(N∆− µ) =
1

kBT
((N + 1)∆− µ)

−(N∆− µ) = ((N + 1)∆− µ)

which gives the desired result, since at T = 0 µ = εF . In words, for low tem-
perature the amount on electrons leaving the state i = N is equal to the amount
gained in i = N + 1, and fFD(µ + x; T, µ) + fFD(µ− x;T, µ) = 1

Problem 7.

The entropy for a system of independent Fermions is given by

S = −kB

∑
o

(fFD log(fFD) + (1− fFD) log(1− fFD))

Calculate lim
T→0

fFD(ε, T, µ) for ε < µ ,ε = µ , and ε > µ.

fFD(ε, T, µ) =
1

eβ(ε−µ) + 1

fFD(µ, T, µ) =
1
2

Therefore, the limits are 1, 1
2 , and 0, respectively.

The number of orbitals with energy εo equal to the Fermi energy εF is M .
Calculate the entropy at T = 0 in this case.

S = −kBM

(
1
2

log(
1
2
) +

1
2

log(
1
2
)
)

= kB log(2M )

Explain your answer in terms of a multiplicity function. Pay close attention to
the issue of dependent and independent variables.
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The number of ways to occupy M orbitals is 2M , which included all states
ranging from no particles at the Fermi energy to all orbitals at the Fermi energy
filled. This is correct, since the formula gives the entropy as a function of µ,
and not at a given number of particles!

A.5 Solutions for chapter 5.

Problem 4.

Pauli Paramagnetism.
The energy of non-relativistic electrons in a small magnetic field is given by
ε~p,s = p2

2m −sµ0B where s = ±1 and µ0 is the magnetic moment of the electron.
Assume µ0B ¿ εF . Note that in this problem we ignore the effect of the
magnetic field on the orbit of the electron, that turns out to be OK in first
approximation. Evaluate the magnetic susceptibility χ in the following four
cases:

(A) For T = 0.

(B) For kBT ¿ εF , one more term beyond (A).

(C) For T = ∞. (Note: this one you can get without any detailed calculation).

(D) For kBT À εF , one more term beyond (C).

N = V ~−3
∑

s

∫
d3pfFD(ε~p,s)

M = V ~−3µ0

∑
s

∫
d3psfFD(ε~p,s)

We use the first integral to find µ(N, V, T ) and then the second to find M(N,V, T ).
For low temperature we write the integrals in the following way:

I(T, µ) = V ~−3

∫
d3pfFD(

p2

2m
,T, µ)

Since the argument of the Fermi-Dirac distribution is given by µ− ε = µ− p2

2m +
sµ0B, we can rewrite the expressions for N and M as:

N = I(T, µ + µ0B) + I(T, µ− µ0B)

M = µ0(I(T, µ + µ0B)− I(T, µ− µ0B))
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Using the fact that B is very small we find up to first order:

N = 2I(T, µ)

M = 2µ2
0B

(
∂I

∂µ

)

T

(T, µ)

χ = 2µ2
0

(
∂I

∂µ

)

T

(T, µ)

χ = Nµ2
0

(
∂ log I

∂µ

)

T

(T, µ)

At T = 0 the integral is easy, since µ(T = 0) = εF :

I(T = 0, εF ) = V ~−3 4π

3
p3

F = V ~−3 4π

3
(2mεF )

3
2

with εF = p2
F

2m . Hence

χ(T = 0) = Nµ2
0

3
2

1
εF

For small T we use µ = εF − π2

12
k2

BT 2

εF
which was obtained from:

N = 2I(T, εF − π2

12
k2

BT 2

εF
)

Therefore, we have at low temperature:

I(T, εF − π2

12
k2

BT 2

εF
) = I(T = 0, εF ) = V ~−3 4π

3
(2mεF )

3
2

and taking the derivative with εF :
(

∂I

∂µ

)

T

(T, εF − π2

12
k2

BT 2

εF
)(1 +

π2

12
k2

BT 2

ε2F
) = V ~−3 4π

3
(2mεF )

3
2
3
2

1
εF

which gives

χ(T )(1 +
π2

12
k2

BT 2

ε2F
) = χ(T = 0)

or

χ(T ) = χ(T = 0)(1− π2

12
k2

BT 2

ε2F
)

Large T, looks like Maxwell-Boltzmann

N = V ~−3
∑

s

∫
d3pe

1
kBT (µ− p2

2m +sµ0B)
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M = V ~−3µ0

∑
s

∫
d3pse

1
kBT (µ− p2

2m +sµ0B)

M

N
= µ0

sinh( µ0B
kBT )

cosh( µ0B
kBT )

For T → ∞ this is zero. That makes sense, all states are equally probable,
independent of B, and hence there is no M as a function of B. Therefore χ = 0.
The next order term is:

M

N
= µ0

µ0B

kBT

χ =
Nµ2

0

kBT

Problem 5.

The virial expansion is given by p
kT =

∑∞
j=1 Bj(T )

(
N
V

)j
with B1(T ) = 1. Find

B2(T ) for non-interacting Fermions in a box.

Using

Ω = −2V kBTλ−3
T f 5

2
(λ)

N = 2V λ−3
T f 3

2
(λ)

and the fact that low density corresponds to small λ we get:

Ω ≈ −2V kBTλ−3
T (λ− λ22−

5
2 )

N ≈ 2V λ−3
T (λ− λ22−

3
2 )

The pressure is still simple:

p = −Ω
V
≈ 2kBTλ−3

T (λ− λ22−
5
2 )

We need to solve for λ as a function of N. Using the fact that the density n = N
V

is small:

n ≈ 2λ−3
T λ(1− λ2−

3
2 )

n(1 + λ2−
3
2 ) ≈ 2λ−3

T λ
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n(1 + nλ3
T 2−

5
2 ) ≈ 2λ−3

T λ

λ ≈ n
1
2
λ3

T (1 + nλ3
T 2−

5
2 )

Inserting in the pressure, and only keeping terms to second order:

p ≈ 2kBTλ−3
T λ(1− λ2−

5
2 )

p ≈ 2kBTλ−3
T n

1
2
λ3

T (1 + nλ3
T 2−

5
2 )(1− n

1
2
λ3

T 2−
5
2 )

p ≈ kBTn(1 + nλ3
T 2−

5
2 − n

1
2
λ3

T 2−
5
2 )

B2(T ) = λ3
T 2−

7
2

This is positive, increasing the pressure, due to the fact that fermions do not
like to be in the same place.

Solution Problem 6.

The chemical potential follows from the equation for N :

N =
∑

o

fFD(εo; T, µ)

which is in this case

N =
2V

(2π)3

∫
d3kfFD(

√
~2c2k2 + m2c4; T, µ)

and there are no convergence problems, like in the notes. This gives

N =
2V

(2π)3

∫
d3k

1
eβ(

√
~2c2k2+m2c4−µ) + 1

with β = 1
kBT . At T = 0 this reduces to

N =
2V

(2π)3

∫

k<kF

d3k

and

εF =
√
~2c2k2

F + m2c4

The equation for N gives

N =
2V

(2π)3
4π

3
k3

F
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or

kF =
(

3π2 N

V

) 1
3

The internal energy at T = 0 follows from a similar expression:

U(T = 0) =
2V

(2π)3

∫

k<kF

d3k
√
~2c2k2 + m2c4

or

U(T = 0) =
V

π2

∫ kF

0

k2dk
√
~2c2k2 + m2c4

If the density is very low, we have for all values ~2c2k2 ¿ m2c4 and we can
write

√
~2c2k2 + m2c4 = mc2

√
~2

m2c2
k2 + 1 ≈ mc2 +

~2k2

2m

which gives

U ≈ Nmc2 +
3
5
N
~2k2

F

2m

which is the non-relativistic result, with the addition of the rest mass energy.
For large densities kF is very large and we can use ~2c2k2 À m2c4 and

√
~2c2k2 + m2c4 ≈ ~ck

which leads to the extreme relativistic limit

U ≈ V ~c
π2

∫ kF

0

k3dk =
V ~c
π2

1
4
k4

F =
3
4
N~ckF

or

U ≈ 3
4
NεF

where we now have a factor 3
4 in front.

Solution Problem 7.

The beginning is copied from the previous solution. Since we include the mag-
netic field in the energy part, we really calculate G(T, µ, V, B) = Ω−MB from
the partition function, similar to the notes:

G = −kBT
∑

o

log(1 + λe
− εo

kBT )
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this can be written in the form

G = −kBT
∑

o

log(1 + λe
− 1

kBT (
p2

z
2m + e~B

mc (j+ 1
2 )))

If we have the free energy, we also have the partition function, of course.

G = −kBT2
eBL2

2π~c
∑

pz,j

log(1 + λe
− 1

kBT (
p2

z
2m + e~B

mc (j+ 1
2 )))

G = −kBT2
eBL2

2π~c
L

2π~

∫ ∞

−∞
dp

∑

j

log(1 + λe
− 1

kBT ( p2

2m + e~B
mc (j+ 1

2 )))

or

G = −kBTV
eB

2π2~2c

∫ ∞

−∞
dp

∑

j

log(1 + λe
− 1

kBT ( p2

2m + e~B
mc (j+ 1

2 )))

Using N = −
(

∂G
∂µ

)
T,V,B

and M = − (
∂G
∂B

)
T,µ,V

we find

N = V
eB

2π2~2c

∫ ∞

−∞
dp

∑

j

1

λ−1e
1

kBT ( p2
2m + e~B

mc (j+ 1
2 )) + 1

which gives in the limit λ → 0 (for high temperature):

N ≈ λV
eB

2π2~2c

∫ ∞

−∞
dp

∑

j

e
− 1

kBT ( p2

2m + e~B
mc (j+ 1

2 ))

or

N ≈ λV
eB

2π2~2c
e
− e~B

2mckBT

∫ ∞

−∞
dpe

− p2

2mkBT

∑

j

e
−j e~B

mckBT

N ≈ λV
eB

2π2~2c
e
− e~B

2mckBT

√
2mkBT

∫ ∞

−∞
dxe−x2 1

1− e
− e~B

mckBT

Check: If B goes to zero we get

N ≈ λV
1

4π2~3

(√
2mkBT

)3
∫ ∞

−∞
dxe−x2

which is equal to the old result.
We can also take the small λ limit in the free energy and get

G = −kBTV
eB

2π2~2c

∫ ∞

−∞
dp

∑

j

λe
− 1

kBT ( p2

2m + e~B
mc (j+ 1

2 ))

Comparing with the formula for N we see G = −NkBT , which should not come
as a surprise, since G = −pV and we are in the limit of an ideal gas!! Therefore:
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M = kBT

(
∂N

∂B

)

T,µ,V

For small values of B we have

N ≈ λV
eB

2π2~2c
e
− e~B

2mckBT

√
2πmkBT

1

1− e
− e~B

mckBT

For small values of x we have

e−x

1− e−2x
≈ 1− x

2x− 2x2 + 4
3x3

=
1
2x

1− x

1− x + 2
3x2

≈ 1
2x

(1−x)(1+x+
1
3
x2) ≈ 1

2x
(1−1

6
(2x)2)

and hence

N ≈ λV
eB

2π2~2c

√
2πmkBT

mckBT

e~B
(1− 1

6

(
e~B

mckBT

)2

)

N ≈ λV
mkBT

2π2~3

√
2πmkBT (1− 1

6

(
e~B

mckBT

)2

)

Hence

M = kBTλV
mkBT

2π2~3

√
2πmkBT

B

3

(
e~

mckBT

)2

χ = kBTλV
mkBT

2π2~3

√
2πmkBT

1
3

(
e~

mckBT

)2

and using the expression for N at T = 0:

χ = kBTN
1
3

(
e~

mckBT

)2

=
N

3kBT

(
e~
mc

)2

A.6 Solutions for chapter 6.

Problem 4.

A quantum mechanical system is described by a Hamiltonian H = H0 + κV ,
with [H0, V ] = 0. κ is a small constant. The Helmholtz free energy is Fκ(T ).
Calculate the change in Helmholtz free energy, ∆F = Fκ − F0 for this system
up to second order in κ

kBT .

Z = Tre−βH = Tre−βH0−βκV = Tre−βH0e−βκV



258 APPENDIX A. SOLUTIONS TO SELECTED PROBLEMS.

since the matrices commute. The value of κ is small, hence:

Z = Tre−βH0

(
1− βκV +

1
2
β2κ2V 2

)

Using the definition of thermodynamic average we have

< X > Tre−βH0 = TrXe−βH0

and hence

Z = Tre−βH0

(
1− βκ < V > +

1
2
β2κ2 < V 2 >

)

Using log(Z) = −βF we find

−βFκ = −βF0 + log(1− βκ < V > +
1
2
β2κ2 < V 2 >)

Expanding the log in second order gives

−βFκ = −βF0 − βκ < V > +
1
2
β2κ2 < V 2 > −1

2
β2κ2 < V >2

or

Fκ − F0 = κ < V > −1
2
βκ2

(
< V 2 > − < V >2

)

Problem 5.

In a two-dimensional Hilbert space the density operator is given by its matrix
elements:

ρ =
(

x R
R∗ 1− x

)

This form is clearly Hermitian and has trace one. Calculate the entropy as a
function of x and R, and find the values of x and R that make the entropy
maximal. Note that you still need to check the condition that the matrix is
positive! Also, show that it is a maximum!

The entropy is given by:

S = −kBTrρ log(ρ)

Use

∂

∂X
Trρ log(ρ) = Tr

(
∂ρ

∂X

)
log(ρ) + Tr

(
∂ρ

∂X

)
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for any variable X. Using R, R∗, and x for X and setting the result to zero
gives:

0 = Tr

(
0 1
0 0

)
log(ρ) + Tr

(
0 1
0 0

)

0 = Tr

(
0 0
1 0

)
log(ρ) + Tr

(
0 0
1 0

)

0 = Tr

(
1 0
0 −1

)
log(ρ) + Tr

(
1 0
0 −1

)

or

(log(ρ))21 = 0

(log(ρ))12 = 0

(log(ρ))11 − (log(ρ))22 = 0

Therefore

log(ρ) =
(

y 0
0 y

)

and hence

ρ =
(

z 0
0 z

)

Using the fact that the trace is one we finally get:

ρ =
(

1
2 0
0 1

2

)

or R = 0,x = 1
2 .

The same can be obtained by finding the eigenvalues of ρ.
The second order derivatives are all negative or zero. Use result (9,33) for any
of the elements and change to coordinates R, R∗, and x.

Problem 6.

A quantum mechanical system is described by a simple Hamiltonian H, which
obeys H2 = 1. Evaluate the partition function for this system. Calculate the
internal energy for T → 0 and T →∞.

Z = Tr

∞∑
n=0

1
n!

(−1)nβnHn
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Split in odd/even terms:

Z = Tr(
∞∑

k=0

1
(2k)!

β2k −
∞∑

k=0

1
(2k + 1)!

β2k+1H)

Z = Tr(cosh(β)−H sinh(β))

The internal energy is U = − ∂
∂β log(Z), which gives:

U = −Tr(sinh(β)−H cosh(β))
Tr(cosh(β)−H sinh(β))

In the limit T →∞ we find

U =
TrH

Tr1
which makes sense, it is the average of all energies.
In the other limit T → 0 we use

U = −Tr(eβ(1−H) + e−β(−1−H))
Tr(eβ(1−H) + e−β(1 + H))

U = −eβTr(1−H)− e−βTr(1 + H)
eβTr(1−H) + e−βTr(1 + H)

which gives U = −1 unless TrH = Tr1 , in which case all energy values are
+1 and only the second terms survive to give U = 1.

Solution to Problem 7.

As stated the problem is easy. Since the sum of the eigenvalues is 1 there is
exactly one eigenvalue equal to 1, the rest is zero. The system is in a specific
state and the entropy is zero.
The question should have been that the eigenvalues are either 0 or 1

N in which
case we have exactly N eigenvalues equal to 1

N and the entropy is kB log(N).
Part C is simple: ρ = ρ1ρ2 · · · where ρ1 only acts on the part of the wave
function pertaining to particle 1, and gives 1 for everything else.


