11.1 INTRODUCTION

Chapter 9 was devoted to the treatment of symmetrical (three-phase) faults in
a power system. Since the system remains balanced during such faults, analysis
could conveniently proceed on a single-phase basis. In this chapter, we shall
deal with unsymmetrical faults. Various types of unsymmetrical faults that
occur in power systems are:

Shunt Type Faults

(i) Single line-to-ground (LG) fault
(ii) Line-to-line (LL) fault
(iii) Double line-to-ground (LLG) fault

Series Type Faults

(i) Open conductor (one or two conductors open) fault.

It was stated in Chapter 9, that a three-phase (3L) fault being the most severe
must be used to calculate the rupturing capacity of circuit breakers, even though
this type of fault has a low frequency of occurrence, when compared to the
unsymmetrical faults listed above. There are, however, situations when an LG
fault can cause greater fault current than a three-phase fault (this may be so
when the fault location is close to large generating units). Apart from this,
unsymmetrical fault analysis is important for relay setting, single-phase
switching and system stability studies (Chapter 12).

The probability of two or more simultaneous faults (cross-country faults) on
a power system is remote and is therefore ignored in system design for
abnormal conditions.
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The method of symmetrical components presented in Chapter 10, is a
powerful tool for study of unsymmetrical faults and will be fully exploited in
this chapter.

11.2 SYMMETRICAL COMPONENT ANALYSIS OF
UNSYMMETRICAL FAULTS

Consider a general power network shown in Fig. 11.1. It is assumed that a
shund type fault occurs at point F in the system, as a result of which currents
I Iy, 1 flow out of the system, and V,, V,, V, are voltages of lines a, b, ¢ with
respect to ground.
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Fig. 11.1 A general power network

Let us also assume that the system is operating at no load before the
occurrence of a fault. Therefore, the positive sequence voltages of all
synchronous machines will be identical and will equal the prefault voltage at F.
Let this voltage be labelled as E,.

As seen from F, the power system will present positive, negative and zero
sequence networks, which are schematically represented by Figs. 11.2a, b and
c. The reference bus is indicated by a thick line and the point F is identified on
each sequence network. Sequence voltages at F and sequence currents flowing
out of the networks at F are also shown on the sequence networks. Figures
11.3a, b, and c respectively, give the Thevenin equivalents of the three sequence
networks.

Recognizing that voltage E, is present only in the positive sequence network
and that there is no coupling between sequence networks, the sequence voltages
at ¥ can be expressed in terms of sequence currents and Thevenin sequence
impedances as

Eo| [Z4 0 0][ly
Va2 = O - O 22 0 102 (111)
0] L0 0 2zl
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Fig. 11.2 Sequence networks as seen Fig. 11.3 Thevenin equi\{alents of the
from the fault point F sequence networks as seen
from the fault point F

Depending upon the type of fault, the sequence currents and voltages are
constrained, leading to a particular connection of sequence networks. The
sequence currents and voltages and fault currents and voltages can then be
easily computed. We shall now consider the various types of faults enumerated

earlier.
11.3 SINGLE LINE-TO-GROUND (LG) FAULT

Figure 11.4 shows a line-to-ground fault at F in a power system through a fault
impedance Z'. The phases are so labelled that the fault occurs on phase a.
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Fig. 11.4 Single line-to-ground (LG) fault at F
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At the fault point F, the currents out of the power system and the line to ground
voltages are constrained as follows:

1,=0 ‘ (11.2)
1.,=0 (11.3)
V,=21, (11.4)
The symmetrical components of the fault currents are
I, 1 a o[,
L= % 1 & allo
1 1 1 1 (L0
from which it is easy to see that
I =1lp=lp= %Ia (11.5)
Expressing Eq. (11.4) in terms of symmetrical components, we have
Var + Vo + Vo = 211, = 3271, - (11.6)

As per Egs. (11.5) and (11.6) all sequence currents are equal and the sum
of sequence voltages equals 32 1,;. Therefore, these equations suggest a series
connection of sequence networks through an impedance 3Z” as shown in Figs.
11.5a and b.
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(a) (b)
Fig. 11.5 Connection of sequence network for a single line-to-ground (LG) fault

In terms of the Thevenin equivalent of sequence networks, we can write from
Fig. 11.5b.

E,
In=—— 7
(Z,+ 2, + Zg)+3Z

Fault current I, is then given by

28 7 (11.8)
(Z,+2Z,+2Z,)+32Z
The above results can also be obtained directly from Egs. (11.5) and (11.6)
by using V,,, V, and V4 from Eq. (11.1). Thus

By 1aZ) + (- 1,52y + (- 192y = 37'1,

Iﬂ = 3131 =

or
Z,+ Z,+ Zy) + 3211, = E,
or
Ea
Ial = f
(Zy+ 2, +Zy)+32Z
The voltage of line b to ground under fault condition is
V= aZVa1 + aV, + Vy

I I I

2

=o|E,—-Z <% +o(—Z —“—)+(—Z —")

( '3 ) 23 3

Substituting for I, from Eq. (11.8) and reorganizing, we get

36227 + Z,(? — a)+ Zy(o? — 1)
(Zy+Z,+ Zy)+ 327

The expression for V. can be similarly obtained.

(11.9)

Vb= Ea

Fault Occurring Under Loaded Conditions

When a fault occurs under balanced load conditions, positive sequence currents
alone flow in power system before the occurrence of the fault. Therefore,
negative and zero sequence networks are the same as without load. The positive
sequence network must of course carry the load current. To account for load
current, the synchronous machines in the positive sequence network are
replaced by subtransient, transient or synchronous reactances (depending upon
the time after the occurrence of fault, when currents are to be determined) and
voltages behind appropriate reactances. This change does not disturb the flow
of prefault positive sequence currents (see Chapter 9). This positive sequence
network would then be used in the sequence network connection of Fig. 11.5a
for computing sequence currents under fault.

In case the positive sequence network is replaced by its Thevenin equivalent
as in Fig. 11.5b, the Thevenin voltage equals the prefault voltage V¢ at the fault
point F (under loaded conditions). The Thevenin impedance is the impedance
between F and the reference bus of the passive positive sequence network (with
voltage generators short circuited).
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This is illustrated by a two machine system in Fig. 11.6. It is seen from this
figure that while the prefault currents flow in the actual positive sequence
network of Fig. 11.6a, the same do not exist in its Thevenin equivalent network
of Fig. 11.6b. Therefore, when the Thevenin equivalent of positive sequence
network is used for calculating fault currents, the positive sequence-currents-
within the network are those due to fault alone and we must superimpose on
these the prefault currents. Of course, the positive sequence current into the
fault is directly the correct answer, the prefault current into the fault being zero.
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J 666" 3 dlj [ CHEE—. g ‘, o F
215 F F

(a) (b) ()

Fig. 11.6 Positive sequence network and its Thevenin equivalent before
occurrence of a fault

The above remarks are valid for the positive sequence network, independent
of the type of fault.

11.4 LINE-TO-LINE (LL) FAULT

Figure 11.7 shows a line-to-line fault at F in a power system on phases » and
c through a fault impedance Z’. The phases can always be relabelled, such that
the fault is on phases b and c. '
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Fig. 11.7 Line-to-line (LL) fault through impedance 2

The currents and voltages at the fault can be expressed as

«=0
=1, V- V.= 1,7 (11.10)
Ic :¥Ib

The symmetrical components of the fault currents are
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i
s 1 a o'|fo
lal= % 1 & «a I
Lo I S | =5 4
“from which we get
I,=-1, (11.11)
Ip=0 (11.12)
The symmetrical components of voltages at F under fault are
V., 1 o o Va
Vor | = % 1 x|V, (11.13)
Vo 1 1 1|l -2,
Writing the first two equations, we have
V=V, + (a+ DV, - P72,
W=V, + (a+ afz) v, - ()sz[h
from which we get
3V, -V =(a- D2, = jV3Z1, (11.14)
Now
Iy= (0" = @) Iy (= Iy == Iy Ip = 0) N
= —jv31, (11.15)
Substituting 7, from Eq. (11.15) in Eq. (11.14), we get
V- V=21, (11.16)

Equations (11.11) and (11.16) suggest parallel connection of positive and
negative sequence networks through a series impedance Z/ as shown in Figs.
11.8a and b. Since I, = 0 as per Eq. (11.12), the zero sequence network is
unconnected.

E( ) |
= b Vai 2y ;); Va2
= ‘e
| CF % LE
[ I il | laz
(b)

Fig. 11.8 Connection of sequence networks for a line-to-line (LL) fault

In terms of the Thvenin equivalents, we get from Fig. 11.8b

[,=— Lo (11.17)
4T Z+2,+7Z _
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From Eq. (11.15), we get

—jﬁEa

L=-1 =—_J "~""a
b Z+2,+2

c

Knowing /,,, we can calculate V,, and V> from which voltages at the fault can

be found.

If the fault occurs from loaded conditions, the positive sequence network can

be modified on the lines of the later portion of Sec. 11.3.

11.5 DOUBLE LINE-TO-GROUND (LLG) FAULT

Figure 11.9 shows a double line-to-ground fault at F in a power system. The ,

fault may in general have an impedance Z' as shown.

F
a_—_
» Va=o0
b e

Fig. 11.9 Double line-to-ground (LLG) fault through impedance Z’

The current and voltage (to ground) conditions at the fault are expressed as

S } (11.19)
or .
Iy+1,+1,=0
Vy=V.=Z'(,+ 1) =321, (11.20)
The symmetrical components of voltages are given by
Vai I o o v,
Vor | = % 1 & ally (11.21)
Vi
ag 1 I I [V,
from which it follows that
V=V, = érv(, + (a0 + AV, (11.22a)
Vio = —; (V. +2V)) (11.22b)

From Egs. (11.22a) and (11.22b)

V- V= %(2 - a-d)V,=v, =321,
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(11.18)

or

Vo=V, + 3zf](10 (11.23)

From Egs. (11.19), (11.22a) and (11.23), we can draw the connecFion gf
sequence networks as shown in Figs. 11.10a and b. The reader may verify this
by writing mesh and nodal equations for these figures.
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(b)

Fig. 11.10 Connection of sequence networks for a double Iine:to-ground
(LLG) fault

In terms of the Thevenin equivalents, we can write from Fig. 11.10b
E,
= 2 ¥z 4320
Ea
Z,+2Zy(Zy +327)1(Z, + 2, +327)
The above result can be obtained analytically as follows:

Substituting for V,,, V,, and V, in terms of E, in Eq. (11..1) and
premultiplying both sides by Z ~! (inverse of sequence impedance matrix), we

get

(11.24)

z' 0 0 || Ei=2,
0 Z;I 0 E, —'leal
0 0 Z(;l _Ea _leal +3Zf1t10

Zl_l 0 0 Ea Ial
=lo z' ollol|-L, (11.25)
0 0 Z(;l 0 IaO
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I
Premultiplying both sides by row matrix [1 1 1] and using Egs. (11.19) and

(11.20), we get

3zf % 2 11
— L +| 1+ + 21 |1 —(k+—]Ea 11.26
Zy ’ [ Z, ZEJ : 2 Zy ( 2
From Eq. (11.22a), we have

By - Ziy =~ DI,
Substituting Io=— (I, + L) [see Eq. (11.19)]

Ea - Zl‘[al = ZZ(Ial + IaO)

or
lo=2e [A%% ),
Z, Z
Substituting this value of I, in Eq. (11.26) and simplifying, we finally get

E
Iy = a
2+ 2,(2,+32) (2, + 2, +327)
If the fault takes place from loaded conditions, the positive sequence network
will be modified as discussed in Sec. 11.3.

| Example 1.1

Figure 11.11 shows a synchronous generator whose neutral is grounded through
a reactance X,. The generator has balanced emfs and sequence reactances Xj,

E—; —— 8
5!
=
.
e
Ij'mwﬁf\{
— + AT
Y Ep o
. IQ, Ec b ‘)\dj

Fig. 11.11  Synchronous generator grounded through neutral reactance

(a) Draw the sequence networks of the generator as seen from the terminals.
(b) Derive expression for fault current for a solid line-to-ground fault on
phase a.
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(c) Show that, if the neutral is grounded solidly, the LG fault current would

be more than the three-phase fault current.

E; fam (| .
é %X
2
3
- L.
Positive Negative

—

Xo
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9

23X,
Loy

Zero

Fig. 11.12 Sequence networks of synchronous generator grounded through

neutral impedance

(d) Write expression for neutral grounding reactance, such that the LG fault
current is less than the three-phase fault current.

Solution (a) Figure 11.12 gives the se-
quence networks of the generator. As stated
earlier voltage source is included in the
positive sequence network only.

(b) Connection of sequence networks for a
solid LG fault (Z/ = 0) is shown in Fig.
11.13, from which we can write the fault
current as

31E,|

Lhg=s ———2 i
oG 2X, + X, 43X, ®
(c) If the neutral is solidly grounded
3E |
Il g= —4— ii
Y TS @)
For a solid three-phase fault (see Fig. 11.14)
lE,}  3IE. |
Ll = —% = 2 iii
alar X, 3x, (iii)

Comparing (ii) and (iii), it is easy to see that
Il 6> 1115

An important observation is made here that,
when the generator neutral is solidly
grounded, LG fault is more severe than a 3L
fault. It is so because, X, < X, = X, in
generator. However, for a line X, > X, = X,,
so that for a fault on a line sufficiently away
from generator, 3L fault will be more severe
than an LG fault.
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lo= 1131,

Fig. 11.13 LG fault

=
)

Fig. 11.14 Three-phase
fault
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(d) With generator neutral grounded through reactance, comparing Egs. (i) -

and (iii), we have for LG fault current to be less than 3L fault

_ 3lEl 3
2X+X5+3X, < 3X,
or
2X, + X, + 3X, > 3X,
or
1 3
X, > 73 & - %) (iv) §

[Example 11.2 ’

Two 11 kV, 20 MVA, three-phase, star connected generators operate in paralle]

as shown in Fig. 11.15; the positive, negative and zero sequence reactances of
each being, respectively, j0.18, J0.15, jO.10 pu. The star point of one of the
generators is isolated and that of the other is earthed through a 2.0 ohm resistor.
A single line-to-ground fault occurs at the terminals of one of the generators.
Estimate (i) the fault current, (ii) current in grounding resistor, and (iii) the
voltage across grounding resistor.

Fig. 11.15

Solution  (Note: All values are given in per unit.)
Since the two identical generators operate in parallel,

0.18 015
Xioq = 1—7 = j0.09, X, = L;- = j0.075

Since the star point cf the second generator is isolated, its zero sequence
reactance does not come into picture. Therefore,
2x20

Zyeq = JO.10 + 3R = j0.10 + 3 x
Ocq = J n=1J . (11)2

=099 + j0.1

For an LG fault, using Eq. (11.18), we get
3E

il

Xleq + XZeq = ZOeq

I; (fault current for LG fault) = 1, =3, =

[fExample 11.3 l

R T N . I S S R B I R A A L e
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: @ I, = 3x1 _ 3
L 7T j0.093 j0.075+ j0.1+0.99 099+ 70.265

= 2.827 - j0.756
; (b) Current in the grounding resistor = I = 2.827 — j0.756

11 =2926 x —20 _ —307 kA
3 x11
(c) Voltage across grounding resistor = % (2.827 - j0.756)
=0.932 — j0.249
= 0965 x 1L _ 613Ky
V3

For the system of Example 10.3 the one-line diagram is redrawn in Fig. 11.16.

i Onabase of 25 MVA and 11 kV in generator circuit, the positive, negative and

zero sequence networks of the system have been drawn already in Figs. 10.23,

- 10.24 and 10.27. Before the occurrence of a solid LG at bus g, the motors are
. loaded to draw 15 and 7.5 MW at 10 kV, 0.8 leading power factor. If. prefault

current is neglected, calculate the fault current and subtransient current in all
parts of the system.

What voltage behind subtransient reactances must be used in a positive

sequence network if prefault current is to be accounted for?

-

P

Xo=006pu Tp € £ Ty —1) ¥
. QQ o i T X =3000Q k g |7 . 289
. ’—r';\ '4—‘2__} 0u 7

[T A i

Fig. 11.16 One-line diagram of the system of Example 11.3

Solution The sequence networks given in Figs. 10.23, 10.24 and 10.27 are
'~ connected in Fig. 11.17 to simulate a solid LG fault at bus 8 (see Fig. 11.16).
If prefanlt currents are neglected

E}=E, = El,= V? (prefault voltage at g)

10
= — = 0.909 pu
11 P
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099 +j0.607 l—fﬂ-"f"f?
-, 2 :
- = j0.23 }-jo.447
Ljo.azs g
d S Rarovees gy
~— > -j0.136 I i
—j0.136 —j0.447 —‘
j0.608 jo.082 17
Lj TN — g
j0.655 b j0.447

Fig. 11.17 Connection of the sequence networks of Example 11.:}.
Subtransient currents are shown on the diagram in pu for a solid
line-to-ground fault at g

The positive sequence network can now be easily replaced by its Thevenin
equivalent as shown in Fig. 11.18.

Reference bus

L
v

= j0.23

)]
=
2
. g
d—— 56—
j0.325 1131

Fig. 11.18

jo.2<

Now
_Jj0.525x%j0.23

Zl z
j0.755

= j0.16 pu
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Zy,=Z, = j0.16 pu

From the sequence network connection

S, V7 o
Tz v 2, + 2,
20909 | 447 pu
j2.032

Iaz = Iao = Ial = - j0.447 pu
Fault current = 3/, = 3 x (- j0.447) = — j1.341 pu
The component of /,, flowing towards g from the generator side is

o447 x 4923 __ 30136 pu
J0.755
and its component flowing towards g from the motors side is
. J0.525 .
- j0.447 x L—= = - j0.311 pu
T ogss TP

Similarly, the component of I, from the generator side is — j0.136 pu and
its component from the motors side is — j0.311. All of 7,, flows towards g from
motor 2.

Fault currents from the generator towards g are

] 1 1 1[-j0.136] [-j0.272

L |=|* a 1|/-j0136|=| j0.136]|pu

L] la o 1)l o j0.136
and to g from motors are

r,7 1 1 1][-jo311] [—j1.069

I |=]a® a 1{]—j0311|=|—j0.136|pu

_IEJ La o 1][—j0.447] |—j0.136

The positive and negative sequence components of the transmission line
currents are shifted -90° and +90° respectively, from the corresponding
components on the generator side of T, i.e.

Positive sequence current = — j(- j0.136) = — 0.136 pu

Negative sequence current = j(~ j0.136) = 0.136 pu

Zero sequence current = 0 (" there are no zero sequence currents

on the transmission line, see Fig. 11.17)
Line a current on the transmission line
=-0136 +0.136 + 0=0

I, and I_ can be similarly calculated.
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Let us now calculate the voltages behind subtransient reactances to be used
if the load currents are accounted for. The per unit motor currents are:

Motor 1: ———>—_ /36.86° = 0.825 £36.86° = 0.66 + j0.495 pu
25x0.909x 0.8

Motor 2: ——— > /3686° = 0.4125 £36.86° = 0.33 + j0.248 pu
25x0.909x 0.8

Total current drawn by both motors = 0.99 + j0.743 pu
The voltages behind subtransient reactances are calculated below:

Motor 1: E”, =0909 - j0.345 x 0.825./36.86°

= 1.08 - j0.228 = 1.104/-11.92° pu
Motor 2: E", =0909 — j0.69 x 0.4125./36.86°

= 1.08 ~ j0.228 = 1.104/-11.92° pu
Generator: E{ = 0.909 + j0.525 x 1.2375/36.86°

= 0.52 + j0.52 = 0.735.£45° pu

It may be noted that with these voltages behind subtransient reactarices, the
Thevenin equivalent circuit will still be the same as that of Fig. 11.18.
Therefore, in calculating fault currents taking into account prefault loading
condition, we need not calculate E,;, E;, and Ef. Using the Thevenin
equivalent approach, we can first calculate currents caused by fault to which the
load currents can then be added.

Thus, the actual value of positive sequence current from the generator

towards the fault is
0.99 + —-j0.743 —;0.136 = 0.99 + j0.607

and the actual value of positive sequence current from the motors to the fault
is

-0.99 —j0.743 —j0.311 = - 0.99 —;j1.054
In this problem, because of large zero sequence reactance, load current is
comparable with (in fact, more than) the fault current. In a large practical
system, however, the reverse will be the case, so that it is normal practice to
neglect load current without causing an appreciable error.

Example 11.4

For Example 11.2, assume that the grounded generator is solidly grounded. Find
the fault current and voltage of the healthy phase for a line-to-line fault on
terminals of the generators. Assume solid fault (Z/ = 0).

Solution  For the LL fault, using Eq. (11.17) and substituting the values of
Xieq and X, . from Example 11.2, we get
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E 1
I = ¢ =
N Xieg t Xoeq  JO.09+ j0.075
Using Eq. (11.15), we have
I (fault current) = I, = —j/31,; = (—j+/3)(~j6.06) = —10.496

Now

= — j6.06

Va1 = Vip = E; — 1)X1q = 1.0 = (- j6.06) (j0.09)
0.455
Vao == lgpZg = 0 (o = 0)
Voltage of the healthy phase,
Vo=V, + Vyp+ Vyg=0091

Example 1 1.5

Sor Example 11.2, assume that the grounded generator is solidly grounded. Find
‘he fault current in each phase and voltage of the healthy phase for a double
ine-to-ground fault on terminals of the generator. Assume solid fault (Z' = 0).
solution  Using Eq. (11.24) and substituting the values of Z,.y, Z,,, and Zg,
rom Example 11.2, we get (note 7= 0, ZOeq = j0.1) '

140 .
L= : = j7.53
7009 00755 010
j0.075+ j0.10
Var = Var = Vao = Ea— Iy Zigg = 1 - (= j1.53) (j0.09)
= 0323
Ip= —o2 = 03B 50
Zow  JO0T5
Vo _ 0323 _
Ia0= —'_0:’—'— =]3.
Zyeq j0.10

Now
L= Pl + al, + L
(-05 —j0.866) (~j7.53) + (0.5 + j0.866) (j4.306) + j3.23
= — 10248 + j4.842 = 11.334 £154.74°
L=al,+ &, + I,

= (—05 + j0.866) (—j7.53) + (~05 —j0.866) (j4.306) + j3.23

- PN - =
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= 10.248 + j4.842 = 11.334£25.28°
Voltage of the healthy phase,
V,=3V, =3 x0.323 = 0.969

11.6 OPEN CONDUCTOR FAULTS

An open conductor . fault is in series with the line. Line currents and series

voltages between broken ends of the conductors are required to be determined.

FiF
1y aia’ o
I b ib’
Is céc/ B

Fig. 11.19 Currents and voltages in open conductor fault

Figure 11.19 shows currents and voltages in an open conductor fault. The ends
of the system on the sides of the fault are identified as F, F while the
conductor ends are identified as aa’, bb”and cc’. The set of series currents and
voltages at the fault are \

(1, [Vaa,_‘
L=11 5V, =V
Ll v

L% ce!

The symmetrical components of currents and voltages are

(Ial vuu’l
Is = Ia2 > Vs = Vaa’2
_Ia() Vau’O

The sequence networks can be drawn for the power system as seen from FF’
and are schematically shown in Fig. 11.20. These are to be suitably connected
depending on the type of fault (one or two conductors open).

Two Conductors Open

Figure 11.21 represents the fault at FF’ with conductors b and ¢ open. The
currents and voltages due to this fault are expressed as

Ve =i (11.27)

aa

I,=I=0 (11.28)
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1
| Positive sequence
Vagt | network

-

Negative sequence
Vaa?2 network

l Zero sequence
Vaat network

Fig. 11.20 Sequence networks for open conductor fault at FF’

In terms of symmetrical components, we can write

Vaarr + Vaars + Vaaro = 0 (1129
Iy =l =l = %1,, (11.30)

—
| Mea2
F F’
a i a’

| |
i F, F*
_c¢c 2

: "aﬂ:-ra:¥7

Fig 11.21 Two conductors open Fig. 11.22 Connection of sequence
networks for two conductors
open
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Equations (11.29) and (11.30) suggest a series connection of sequence
networks as shown in Fig. 11.22. Sequence curreuts and voltages can now be
computed.

‘One Conductor Open

For one conductor open as in Fig. 11.23, the circuit conditions require

Vipr=V.o =0 (11.31)
1,=0 (11.32)
In terms of symmetrical components these conditions can be expressed as
Vaa’l = Vaa/Z = Vaa’O = %Vaa' (11.33)
I+ 1+ 1p=0 (11.34)

Equations (11.33) and (11.34) suggest a parallel connection of sequence
networks as shown in Fig. 11.24.

Vaa't
FI 1 F
J'e11
Vaa'2.
Fo ¢F
| [
"52
FlFE
|
JR— a8
1
o — bbb’ - F..M. .
]
I —
5 B
I . € uC /
¢ T a0

Fig. 11.23 One conductor open Fig. 11.24 Connection of sequence
networks for one conductor
open

11.7 BUS IMPEDANCE MATRIX METHOD FOR ANALYSIS OF
UNSYMMETRICAL SHUNT FAULTS

Bus impedance method of fault analysis, given for symmetrical faults in
Chapter 9, can be easily extended to the case of unsymmetrical faults. Consider
for example an LG fault on the rth bus of a n-bus system. The connection of
sequence networks to simulate the fault is shown in Fig. 11.25. The positive
sequence network has been replaced here by its Thevenin equivalent, i.e.

Unsymmetrical Fault Analysis m

prefault voltage V{_, of bus r in series with the passive positive sequence
network (all voltage sources short circuited). Since negative and zero sequence
prefault voltages are zero, both these are passive networks only.

Reference bus| Vi-r () =
. %
for passive — = Vir

positive Vi
sequence rth bus
network '

Vo= V‘zf-.r 3zf []
rthbus }
f

VO-r = Vﬂ-r
rth bus i

f
lr(}-r

Fig. 11.25 Connection of sequence networks for LG fault
on the r th bus (positive sequence network
represented by its Thevenin equivalent) -

It may be noted that subscript a has been dropped in sequence currents and
voltages, while integer subscript is introduced for bus identification. Super-
scripts o and f respectively, indicate prefault and postfault values.

For the passive positive sequence network

Vi gus = Zipus Ji-Bus (11.35)
where
Viei
(= -
V,pus=| . |= positive sequence bus voltage vector (11.36)
Vi
zl—li Zl—]n
Z, zys = : | = positive sequence bus impedance matrix
Zlfnl Zl—nn
(11.37)
and
Ji ,
gy i L
Jipus=| . | = positive sequence bus current injection vector (1 1.38)
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As per the sequence network connection, current — / JI_, is injected only at the

faulted rth bus of the positive sequence network, we have therefore

Jigus = _1";- (11.39)

1=r

L 0 |
Substituting Eq. (11.39) in Eq. (11.35), we can write the positive sequence
voltage at the rth bus of the passive positive sequence network as

Vi,=-2,_1 (11.40)

Thus the passive positive se?uence network presents an impedance Z, _,, to the
positive sequence current I+ _.

For the negative sequence network

Vo sus = Zogus J2 Bus (11.41)

The negative sequence network is injected with current Ifz_r at the rth bus
only. Therefore,

JZ—BUS = (1 142)

L 0
The negative sequence voltage at the rth bus is then given by
vV, ,=-7, .V, , (11.43)

Thus, the negative sequence network offers an impedance Z,_,, to the negative
sequence current 17, |

Similarly, for the zero sequence network
V()—BUS = Z()—BUS J(FBUS (] 144)
r O n
0
Josus=| _ (11.45)
o—r

0
and Vo, = - Zy,, Vo, (11.46)

That is, the zero sequence network offers an impedance Z,_,. to the zero
sequence current 17, .

i
From the sequence network connection of Fig. 11.25, we can now write
VO
L= f (11.47)
ke Z?.frr + ZO--rr +3Z

[‘f_,. = IZf—r :1({—)‘ = 7

1-rr

Sequence currents for other types of faults can be similarly computed using

Zi_» Zy_,, and Zy_, in place of Z;, Z, and Z; in Egs. (11.7), (11.17) and
(11.24) with E, = V{_,.

Postfault sequence voltages at any bus can now be computed by superposing
on prefault bus voltage, the voltage developed owing to the injection of

appropriate sequence current at bus r.
For passive positive sequence network, the voltage developed at bus i owing

to the injection of — F,_, atbus ris

Vii=— Zigl, (11.48)
Hence postfault positive sequence voltage at bus i is given by
Vi =Ve,-Z 0 i=1,2, ., (11.49)

where
vy ;= prefault positive sequence voltage at bus i

Z,_;, = irth component of Z,_gus

Since the prefault negative sequence bus voltages are zero, the postfault
negative sequence bus voltages are given by

V=04 Vs
== Zz—irlfz-,- (11.50)

where

Zy ;= irth component of Z,_yyy
Similarly, the postfault zero sequence bus voltages are given by

Vii==Zy oy ii= 1,2 (11.51)
where

Zy_i, = irth component of Z,_pys

With postfault sequence voltages known at the buses, sequence currents in
lines can be computed as:
For line uv, having sequence admittances y; .. ¥2_,, and Yo_,,
1f1~uv = V- (Vfl—u - V{-v)
Uy = vow Vi = Vi) (11.52)
If()—uv = Yo-uv (VfO—u - V{)—v)
Knowing sequence voltages and currents, phase voltages and currents can be
easily computed by the use of the symmetrical component transformation
V,= AV,
1, = Al
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It appears at first, as if this method is more laborious than computing fault
currents from Thevenin impedances of the sequence networks, as it requires
computation of bus impedance matrices of all the three sequence networks. It
must, however, be pointed out here that once the bus impedance matrices have
been assembled, fault analysis can be conveniently carried out for all the buses,
which, in fact, is the aim of a fault study. Moreover, bus impedance matrices
can be easily modified to account for changes in power network configuration,

Example 11.6

R ‘
Unsymmetrical Fault Analysis l?ﬁi‘ﬁ

For Example 10.3, positive, negative and zero sequence networks have been
drawn in Figs. 10.23, 10.24 and 10.27. Using the bus impedance method of
fault analysis, find fault currents for a solid LG fault at (i) bus e and (ii) bus
/. Also find bus voltages and line currents in case (i). Assume the prefault
currents to be zero and the prefault voltages to be 1 pu.

Solution  Figure 11.26 shows the connection of the sequence networks of
Figs. 10.23, 10.24 and 10.27 for a solid LG fault at bus e.

, | -

7 17
E g

m1 rgZ
+ Paositive sequence + +
j0.2 network j0.345 j0.69
e o
YT e T
@  jo.0805 j0.164 jo.ogos @

S e

Negative sequence

j0.2 network 0345 jo.69

:
_

jo.0805 @

j0.164

j1.548 = Zero sequence

network L jO.DBZé
E?

:%
(0.060 =
Y © @
- S L S LA T T -

@ j0.0BOS? j0.494 jo.osos @

1548

j0.164

Fig. 11.26 Connection of the sequence networks of Example 11.6 for an LG
fault at bus e

Refer to Fig. 11.26 to find the elements of the bus admittance matrices of the
three sequence networks. as follows:

1

1

Y, = = j17.422
1-dd™ 02~ j0.0805
-1 .
/ =Y = e T 12422
Yig="Yra 70.0805 7
1 1 .
] = = —]18519
Vig=Yiee 70.0805 * j0.164
Y, = —L = j6.097
-4~ j0.164
1 1 T
= + = - ]16769
Vige j0.085 = j0.345  j0.69
d e ifi g
d[-17.422  12.422 0 0
- . 0
Y, pus= Yopus = .| 12422 —18519 6.097
fl o 6.097 —18519  12.422
gl o 0 12422 —16.769
= s = — j0i671
Yo-ur= Trgos =777 .
1 1 .
= = = - j14.446
Yo-ee = Yoy = 50805 T joaoa =7
y, = —L_ =_ joss4
0-82 " j1.712
YO—de = 0.0
=1 =024
-~ Soa04 7’
Vo, =400
d e f 8
d[r—0.621 0 0 0
- . 0
Yo pus= .¢| O 14.446 2.024
Tfl o 2024 —14446 0
gl 0 0 0 —0.584

Inverting the three matrices above renders the following three bus impedance

matrices
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0.14706  0.12575 0.08233 006102
; , 012575 017636 011547 0.08558
RS T BUST 008233 011547 018209 013563

0.06102  0.08558 0.13563 0.16019

1.61031 0 0 0
0 0.07061  0.00989 0
0 0.00989  0.07061 0

0 0 0 1.71233
The fault current with LG fault on bus ¢ is

Zygus = J

1/ - 3x1
© jO.17636 + j0.17636 + J0.07061
The fault current with LG fault on bus fis

e 3x1 3
7018299+ j0.18299 + j0.07061 70.43659

=— j6.871 pu (ii)

=~ j7.08 pu ()

Bus voltages and line currents in case (i) can easily be computed using
Egs. (11.49)-(11.52). Given below is a sample calculation for computing
voltage at bus f and current in line ef.

Frora Eq. (11.49)

ler—d = vlo—d - Zl—de - [{—e
=10- j0.12575(—j%) = 0.703 pu

Vfl»j'= Vig- Zy fom ]fl e

1.0 - j0.11547 (-j 7'286) = 0.728 pu

vfl—(' = volﬂ' - Zl—-l'e_ljlf('

1.0 - j0.17638 (- j2.363) = 0.584 pu
= Vf—g - Z]—ge—l{—e
= 1.0 - jO.08558 (- j2.363) = 0.798 pu
Vj;—f == ZZ—feI f2—e
== jO.11547 x (- j2.362) = - 0.272 pu
VIo p== Zy oty , = = j0O.00989 x (= j2.362)
=-0.023 pu

v{_g

Vi, =- 2, 0, . =~ jO.17636 x (- j2.362)

= - 0417 pu

Vi, =— Zy .y, = — jO.OT06 x (- j2.362)
= - 0.167 pu

Vo= Zy gol’y, =~ jO.08558 x (- j2.362)
=-0.202 pu

VfO—g == ZO—geIfO—e =0 ‘ .
Using Eq. (11.52), the currents in various parts of Fig. 11.26 can be
computed as follows:
Pise =Yg Vip- Vi)
=~ j6.097 (0.728 — 0.584)
=— j0.88
Fige=Yige Vig- V)
— j12.422 (0.703 - 0.584) = — j1.482
=V o+ P4 =- jO8B + (- j1.482)
=- j2.362 L
which is the same as obtained earlier [see Eq. (i)] where I, = 31,,.
Vg =Yg Vig-Vip
= j12.422 (-0.798 - 0.728) = - j0.88 |
Notice that as per Fig. 11.26, it was required to be the same as Ifl_ﬂ,.
L=Yp Vp= Vi
=— j6.097 (- 0.272 + 0.417) = - j0.884

I

al

! {)7,/'1' = Y-fe (Vf;-f“ Vfo-e)
=- j2.024 (- 0.023 + 0.167) = — jO.29] pu
11/? (a) = Ifl—fe + ’fz—fe + 1{)—fe
= - j0.88 + (~ jO.88) + (- jO.291)
=— j2.05

Similarly, other currents can be computed.

Example 11.7

A single line to ground fault (on phase a) occurs on the bus 1 of the system of
Fig. 11.27. Find
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ol 2 R
;J:egf‘( VAN !]7 ;_Ii{L\‘ \(‘1756—_]-_

Fig. 11.27

(a) Current in the fault.

(b) SC current on the transmission line in all the three phases.

(c) SC current in phase a of the generator.

(d) Voltage of the healthy phases of the bus 1.
Given: Rating of each machine 1200 kVA, 600 V with X’= X, = 10%,
Xy = 5%. Each three-phase transformer is rated 1200 kVA, 600 V - A/3300
V-Y with leakage reactance of 5%. The reactances of the transmission line are
X) =X, =20% and X, = 40% on a base of 1200 kVA, 3300 V. The reactances

of the neutral grounding reactors are 5% on the kVA and voltage base of the
machine.

Note: Use Zg; method.

Solution  Figure 11.28 shows the passive positive sequence network of the
system of Fig.11.27. This also represents the negative sequence network for the
system. Bus impedance matrices are computed below:

Reference bus

! I
0.1 = 0.1

? =

ST |
O e —
0.05 0.2 0.05

Fig. 11.28
Bus 1 to reference bus
Bus 2 to Bus 1

, _Jois ois
-BUS =] 015 035

Bus 2 to reference bus

z 7015 015 T L) P
7015 035] 035+015)03s) 0

'

Unsymmetrical Fault Analysis

o105 00457 (i)
e Zisus=J| 0045 0105) “2BUS

Zero sequence network of the system is drawn in Fig. 11.29 and its bus
impedance matrix is computed below.

Reference bus

3 | 3
= 0.15
0.15 = ! r:j‘
| J
0.05 é ' T:?I 0.05
1 2 “
C WWJ —
0.05 0.4 0.05
Fig. 11.29
Bus 1 to reference bus
Zy gys = J [0.05]
Bus 2 to bus 1
[0.05 0.05]
Zopus=J) 005 045
Bus 2 to reference bus
] 0.05
Zo pus = J 0050051 __Jj __ [ }[0.05 0.45]
0.05 0.45] 0.45+0.05|045
or
170.045 0.005] (i)
Zosus =75 0005 0.045
As per Eq. (11.47)
0
1, = % i
Zy + 2+ 2oy, +32
But V° = 1 pu (system unloaded before fault)
Then
A= —j1.0 =— j3.92 pu
B = 510510105 +0045
Ifl‘—l = Ié—l = If ° NZ pu

(a) Fault current, I’; = 3If1_l =
® Viy= V= 2y Py
= 1.0 - j0.105 x ~ j3.92 = 0.588; V°,; = 1 pu
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Vi, = V= Zilh, 4 V? 2 = 1.0 (system unloaded before fault)

=10 - j0.045 x — j3.92 = 0.824
Vii=- Zz-ulfz—l

=~ Jj0.105 x — j3.92 = 0.412
sz-z =-Zynl f2-1

=~ j0.045 x - j3.92 = - 0.176
Vg—l == ZO‘III(])”—I

=-j0.045 x - j3.92 = - 0.176
Vg—z == Zy g I{H

=-j0.005 x - j3.92 = - 0.02
I{—IZ = V12 (V{—l - Vfl—a)

© Fg= 7613 (1 - 0.588) £-33°
= - 137- j2.38

o= —— [0- (- 0412)] £30°
6= J015 [0-( )]

137 — j2.38

V, g =0 (see Fig. 11.29)

I o= (-137 - j238) + (1.37 — j2.38)
=— j4.76

Current in phases b andic of the generator can be similarly calculated.

@ Vfb-l = 2Vf1_1 + VfZ—l + Vfo-n
= (0.588 /240° — 0412 £120° - 0.176

1
S0 (0588 - 0.824) = jL.18 = — 0.264 — j0.866 = 0.905 /- 107°

f =
o= Y212 (V£-1 - Vf2~2)

Vi =Vi+ Vi + Vi
= 0.588 £120° — 0.412 £240° - 0.176
= - 0.264 + j0.866 = 0.905 £107°

1
——(- 0. =
jO.2( 412 + 0.176) = j1.18

1]

f
Fo 3= Yo (Vfo_l - Vfo_z)

_
~o— (= 0.176 + 0.020) = j0.39

PROBLEMS

Jjo.4
I f 11.1 A 25 MVA, 11 kV generator has a X = 0.2 pu. Its negative and zero
el 1 I L i, sequence reactances are respectively 0.3 and 0.1 pu. The neutral of the
15':12 = |af a 1|1 g generator is solidly grounded. Determine the subtransient current in the
7’ 3 a o 1 [}_ : generator and the line-to-line voltages for subtransient conditions when
0-12 an LG fault occurs at the generator terminals. Assume that before the
1 1 17 j1.18 occurrence of the fault, the generator is operating at no load at rated

voltage. Ignore resistances.

11.2 Repeat Problem 11.1 for (a) an LL fault; and (b) an LLG fault.

11.3 A synchronous generator is rated 25 MVA, 11 kV. It is star-connected

with the neutral point solidly grounded. The generator is operating at no

load at rated voltage. Its reactances are X" = X, = 0.20 and X, = 0.08

pu. Calculate the symmetrical subtransient line currents for (i) single
line-to-ground fault; (ii) double line fault; (iii) double line-to-ground

=|la® a 1||j118
a & 1]]j039
Py ip=j118 + j118 + j0.39 = j2.75
Uy =118 Z240° + j1.18 /120° + j0.39

= - j079
oo S fault; and (iv) symmetrical three-phase fault. Compare these currents
Perz=JL18 £120° + j118 £240° + j0.39 and comment. ’ ’
=J0.79 11.4 For the generator of Problem 11.3, calculate the value of reactance to be
included in the generator neutral and ground, so that line-to-ground fault
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11.5

11.6

I
current equals the three-phase fault current. What will be the value of

the grounding resistance to achieve the same condition?

With the reactance value (as calculated above) included between
neutral and ground, calculate the double line fault current and also
double line-to-ground fault current,

Two 25 MVA, 11 kV synchronous generators are connected to a
common bus bar which supplies a feeder. The star point of one of the
generators is grounded through a resistance of 1.0 ohm, while that of the
other generator is isolated. A line-to-ground fault occurs at the far end
of the feeder. Determine: (a) the fault current; (b) the voltage to ground
of the sound phases of the feeder at the fault point; and (c) voltage of
the star point of the grounded generator with respect to ground.

The impedances to sequence currents of each generator and feeder are
given below:

Generator Feeder

(per unit) (ohms/phase)
Positive sequence jo.2 jo.4
Negative sequence JjO.15 Jj0.4
Zero sequence J0.08 J0.8

Determine the fault currents in each phase following a double line-to-
ground short circuit at the terminals of a star-connected synchronous
generator operating initially on an open circuit voltage of 1.0 pu. The
positive, negative and zero sequence reactance of the generator are,
respectively, j0.35, j0.25 and j0.20, and its star point is isolated from
ground.
A three-phase synchronous geﬁeratlor has positive, negative and zero
sequence reactances per phase respectively, of 1.0, 0.8 and 0.4 ohm. The
winding resistances are negligible. The phase sequence of the generator
is RYB with a no load voltage of 11 kV between lines. A short circuit
occurs between lines Y and B and earth at the generator terminals.
Calculate sequence currents in phase R and current in the earth return
circuit, (a) if the gencrator neutral is solidly earthed; and (b) if the
generator neutral is isolated.
Use R phase voltage as reference.

A generator supplies a group of identical motors as shown in Fig.

-11.8. The motors are rated 600 V, 90% efficiency at full load unity
power factor with sum of their output ratings being 5 MW. The motors
are sharing equally a load of 4 MW at rated voltage, 0.8 power factor
lagging and 90% efficiency when an LG fault occurs on the low voltage
side of the transformer.

Specify completely the sequence networks to simulate the fault so as
to include the effect of prefault current. The group of motors can be
treated as a single equivalent motor.

| 429
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Find the subtransient line currents in all parts of the system with

prefault current ignored.

7.5 MVA
3306kV
=10% | ( \
g p J 5 Motors
b —+—{ ! . Motor:
U@ _“_/ = sMw
10MVAIIRY / () | (total)
= = 109
§_=);2% 1O/né LG Each motor
0 fault X'= X, = 20%
Xo =5%
X, = 2.5%
\ﬁ/\m\,-;m
Fig. P-11.8

11.9 A double line-to-ground fault occurs on lines b and c at point F' in the

system of Fig. P-11.9. Find the subtransient current in phe;ls‘e eSc ac::g
machine 1, assuming prefault currents to be z/eiro. Both g};c 11(11 e
rated 1,200 kVA, 600 V with reacFances io;f 7)607\ \}/(/2\ =6%)0 i/ arzS p 200

%. Lac -ee-phase transformer is rated 1,200 KVA, ~Q/3.J
f/ioY l\:vdx(t'}l: ll:;;;ée reactance of 5%. The reactances of the \t/rzns;n;g;l(\)/n
line are X, = X, = 20% and X, = 40% on a base of 1,200 kVA, h, kVA.
The reactances of the neutral grounding reactors are 5% on the

base of the machines.

T
C %E F
1 .
TEY  AY
Lo . L =

“~

Fig. P-11.9

11.10 A synchronous machine 1 generating 1 pu voltage is connected through

a Y/Y transformer of reactance 0.1 pu to two transmlsswnhlmesY /1Yn
parallel. The other ends of the lines are connected.thri)ug alta h
transformer of reactance 0.1 pu to a machine 2 generating 1 pu voltage.
r both transformers X, = X, = X. .

FOCalculate the current fed into a double line-to-groqnd fault on thg ltn(l)i'
“side terminals of the transformer fed from machme. 2. jI'he stag p:g)m’[‘he
machine 1 and of the two transformers__gre solidly grour}; e .aIe
reactances of the machines and lines referred to a common base

X, X, Xo
Machine 1 0.35 0.25 ggi
Machine 2 0.30 0.20 I

0.40 0.40 0.80

Line (each)
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L1.11 Figure P-11.11 shows a power network with two generators connected 11.13 The reactance data for the three-phase system of Fig. P-11.13 is:
in parallel to a transformer feeding a transmission line. The far end of Generator: X, = X, = 0.1 pu; X, = 0.05 pu
the line is connected to an infinite bus through another transformer. Star X, (grounding reactance) = 0.02 pu
point of each transformer, generator 1 and infinite bus are solidly

- : former: X; = X, = X, = 0.1 pu
grounded. The positive, hegative and zero sequence Teactances of S XI (grofmding reactance) = 0.04 pu
various components in per unit on a common base are: 8 . ; ices.
' l p' j j Form the positive, negative and zero sequence bus impedance matt;c?ts
Posttive  Negative zero For a solid LG fault at bus 1, calculate the fault current and its
generatorzl (());: 8; e " ! isolated) contributions from the generator and transformer.
enerator 5 H 00 (1.e. neutral iso ate
T 2
Each transformer 0,15 0.15 0.15 Ly @-H —
Infinite bus 0.15 0.15 0.05 == CTENA
Line 0.20 0.20 0.40 =
(a) Draw the sequence networks of the power system. Fig. P-11.13
(b) With both generators and infinite bus operating at 1.0 pu voltage on ‘
no load, a line-to-ground fault occurs at one of the terminals of the Hint: Notice that the line reactances are not given. Therefore it is
star-connected winding of the transformer A. Calculate the currents S in Z directly rather than by inverting Y| pus-
flowing (i) in the fault: and (ii) through the transformer A ‘ convenient to obtain Z;, pys

is si i om it. In such
Also Yy gys is singular and Z, 5,5 cannot be obtained fr

Gp— A B situations the method of unit current injection outlined below can be
G é'}‘_‘_‘ _‘_‘HFI“‘Q used.
Ai \F’ A Infinite For a two-bus case
bus
- - 14 Zy  Zy ][ 1) ]
Fig. P-11.11 v, 12, Zyplhl
octi i at bus 1 (ie. I, =1, I, = 0), we get
11.12 A star connected synchronous generator feeds bus bar 1 of a power Injecting unit current at bus 1 ( ! 2
system. Bus bar 1 is connected to bus bar 2 through a star/delta Zyy =V,
transformer in serics with a transmission line. The power network Zy =V,
connected to bus bar 2 can be equivalently represented by a star- _—— ) _ 2 e 1, =0, L = 1), we get
connected generator with equal positive and negative  sequences Similarly injecting unit current at bus 2 (i.e. 1, =0, 1,
reactances. All star points are solidly connected to ground. The per unit Z, =V,
Sequence reactances of various components are given below: 7=V
n="
Positiv, Negative Zer . e .
—_— :;v;(;w rds(llsrlz 0(()/;) Zyus could thus be directly obtained by this technique. lid LL
€nerato J D 5 .
Transf 0.12 0.12 0.12 11.14 Consider the 2-bus system of Example 11.3. Assume that a soli o
s O.Imér ) ’ ' ' fault occurs on bus f. Determine the fault current and voltage (to grou 7
Transmission Line 0.30 O.3Q 0.50 of the healthy phase. ‘ LG
Power Network X X 0.10 11.15 Write a computer programme to be employed for studylng a solid A
Under no load condition with 1.0 pu voltage at each bus bar, a gurrent ' fault on bus 2 of the system shown in Fig. 9.17. Our aim is to ﬁnd the
of 4.0 pu is fed to a three-phase short circuit on bus bar 2. Determine fault current and all bus voltages and the line currents following the
the positive sequence reactance X of the equivalent generator of the fault. Use the impedance data given in Example 9.5. Assume. E;ll
y POWET etwork. transformers to be Y/A type with their neutrals (on HV side) solidly
For the same initial conditions, find the fault current for single line- grounded.
to-ground fault on bus bar 1.
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Assume that the positive and negative sequence, reactances of the
generators are equal, while their zero sequence reactance is one-fourth
of their positive sequence reactance. The zero sequence reactances of the
lines are to be taken as 2.5 times their positive sequence reactances. Set
all prefault voltages = 1 pu.
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