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Abstract. A 2-rainbow dominating function (2-rD function) of a graph G = (V,E) is
a function f : V (G) → {∅, {1}, {2}, {1, 2}} having the property that if f(x) = ∅, then
f(N(x)) = {1, 2}. The 2-rainbow domination number γr2(G) is the minimum weight of∑

v∈V (G) |f(v)| taken over all 2-rainbow dominating functions f . An outer-independent
2-rainbow dominating function (OI2-rD function) of a graph G is a 2-rD function f for which
the set of all v ∈ V (G) with f(v) = ∅ is independent. The outer independent 2-rainbow
domination number γoir2(G) is the minimum weight of an OI2-rD function of G. In this
paper, we study the OI2-rD number of graphs. We give the complexity of the problem OI2-rD
of graphs and present lower and upper bounds on γoir2(G). Moreover, we characterize graphs
with some small or large OI2-rD numbers and we also bound this parameter from above for
trees in terms of the order, leaves and the number of support vertices and characterize all
trees attaining the bound. Finally, we show that any ordered pair (a, b) is realizable as the
vertex cover number and OI2-rD numbers of some non-trivial tree if and only if a+1 ≤ b ≤ 2a.
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1. INTRODUCTION AND PRELIMINARIES

For notation and terminology which are not given here, we refer to [11]. Let
G = (V (G), E(G)) be a graph with the vertex set V = V (G) and the edge set
E = E(G). The open neighborhood of v is N(v) = {u ∈ V (G)|uv ∈ E(G)} and
the closed neighborhood of v is N [v] = {v}∪N(v). For a set S ⊆ V (G), its open neigh-
borhood is N(S) = ∪v∈SN(v) and its closed neighborhood is the set N [S] = N(S)∪S.
The maximum (minimum) degree among the vertices of G is denoted by ∆(G) (δ(G)),
respectively. The distance between two vertices u and v in G, denoted by d(u, v),
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is the minimum length of a (u, v)-path in G. The diameter of G, diam(G), is the
maximum distance among all the pairs of vertices in G. In a graph G, the length of
a longest cycle is called its girth. If G has no cycle, the girth of G is defined to be
infinite. A support vertex is called strong support vertex if it is adjacent to at least
two leaves.

A set S ⊆ V (G) is called a dominating set in G if N [S] = V (G). The dom-
ination number γ(G) is the minimum cardinality of a dominating set in G. A set
S ⊆ V (G) is independent if no two vertices in S are adjacent. The maximum cardinality
of an independent set in G (α(G)) is said to be the independence number of G. A vertex
cover Q of a graph G is a set of vertices that every edge has an end point in Q. The
minimum cardinality of a vertex cover is denoted by β(G). The corona of two graphs
G1 and G2 is the graph G1 ◦ G2 formed from one copy of G1 and |V (G1)| copies
of G2 where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2.

A function f : V (G)→ P({1, 2}) is a 2-rainbow dominating function (2-rD function)
if for every vertex x with f(x) = ∅, f(N(x)) = {1, 2}. The 2-rainbow domination
number γr2(G) is the minimum weight of

∑
v∈V (G) |f(v)| taken over all 2-rD functions.

A 2-rD function f is an independent 2-rainbow dominating function (I2-rD function) if
no two vertices assigned nonempty sets are adjacent. The weight of an I2-rD function
f is the value w(f) =

∑
v∈V (G) |f(v)|. The independent 2-rainbow domination number

γir2(G) is the minimum weight of an I2-rD function of G. The concept of rainbow
domination was introduced by Bresar et al. [1] and inspired the works [2, 3] and [12].
It is worth mentioning that since 2004, many papers have been published in which
some new variations such as rainbow domination, connected rainbow domination, total
rainbow domination, independent rainbow domination and rainbow domination of
directed graphs were introduced [6,8], and the relation between rainbow domination
and domination, Roman domination and double Roman domination, independent
double Roman domination have been investigated [9, 10].

Definition 1.1 ([7]). A function f : V (G) → P({1, 2}) is an outer independent
2-rainbow dominating function (OI2-rD function) of G if f is a 2-rD function and
the set of vertices with weight ∅ is independent. The outer independent 2-rainbow
domination number (OI2-rD number) γoir2(G) is the minimum weight of an OIk-rD
function of G. An OI2-rD function of weight γoir2(G) is called a γoir2(G)-function.

For an OI2-rD function f , we let V∅, V{1}, V{2} and V{1,2} stand for the set of
vertices assigned with ∅, {1}, {2} and {1, 2} under f . Since these four sets determine f ,
we can equivalently write f = (V∅, V{1}, V{2}, V{1,2}). Note that

w(f) = |V{1}|+ |V{2}|+ 2|V{1,2}|.

This paper is organized as follows: We study some preliminary results on OI2-rD
number of graphs in Section 2. In Section 3, we characterize graphs G with some small
or large OI2-rD numbers. We give the complexity of the problem OI2-rD of graphs in
Section 4. In Section 5 we study the lower and upper bounds on γoir2(G). In Section 6
we also bound this parameter from above for trees in terms of the order, leaves and
the number of support vertices and characterize all trees attaining the bound. Finally,
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we show that any ordered pair (a, b) is realizable as the vertex cover number and
OI2-rD numbers of some non-trivial tree if and only if a+1 ≤ b ≤ 2a. We end the paper
with conclusions and problems.

2. PRELIMINARY RESULTS

In this section, we obtain some basic results and give the exact formulas for the OI2-rD
numbers for some well-known graphs. We first observe that γoir2(G) is well defined
for all graphs, because every graph G has a trivial OI2-rD function v → {1} for every
v ∈ V (G).

We first present the exact formulas for the OI2-rD numbers for paths, cycles,
complete, and complete multipartite graphs. We only obtain the OI2-rD numbers of
cycles and left others.

Observation 2.1. For n ≥ 1, γoir2(Pn) = bn
2 c+ 1.

Observation 2.2. For n ≥ 3, γoir2(Cn) = bn
2 c+ dn

4 e − b
n
4 c.

Proof. Let f = (V∅, V{1}, V{2}, V{1,2}) be a γoir2(Cn)-function. It is clear that
|V0| ≤ bn

2 c. So, ⌊n
2

⌋
+

⌈n
4

⌉
−

⌊n
4

⌋
=

⌈n
2

⌉
≤ γoir2(Cn).

Let n ∈ {4k, 4k+ 1, 4k+ 3}. Then the function f with f(v4t+1) = {1}, f(v4t+3) = {2}
and f(v4t) = f(v4t+2) = ∅ is a γoir2(Cn)-function.

Now let n = 4k + 2. Then the function f with f(v4t+1) = {1}, f(v4t+3) = {2} for
4t+ 1 6= n− 1, f(v4t) = f(v4t+2) = ∅ and f(vn−1) = {1, 2}, is a γoir2(C4k+2)-function.
All in all, we observe that w(f) = bn

2 c+ dn
4 e − b

n
4 c.

Observation 2.3. The following statements hold.

(a) For n ≥ 3, γoir2(Kn) = n− 1.

(b) For m ≤ n, γoir2(Km,n) =
{

2 if m = 1,
m if m ≥ 2.

(c) Let k≥3 and Kn1,n2,...,nk
be a complete k-partite graph with 1≤n1≤n2≤ . . .≤nk.

Then, γoir2(Kn1,n2,...,nk
) =

∑k−1
i=1 ni.

3. GRAPHS G WITH SMALL OR LARGE γoir2(G)

Our aim in this section is to characterize the connected graphs with small or large
OI2-rD numbers. It is obvious that, for any connected graph G of order n ≥ 2,
2 ≤ γoir2(G) ≤ n.

We first give the characterizations of all connected graphs G for which
γoir2(G) ∈ {2, 3}.
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Proposition 3.1. Let G be a connected graph. Then γoir2(G) = 2 if and only if
G ∈ {K1,n, K2,n} or G = K∗2,n which is obtained from K2,n by joining two vertices
in its 2-vertex partite set, where n ≥ 2.

Proof. Clearly,
γoir2(K1,n) = γoir2(K2,n) = γoir2(K∗2,n) = 2.

Conversely, let γoir2(G) = 2 and f be a γoir2(G)-function. Then, one of the following
situations holds.

(a) There exists a vertex v for which f(v) = {1, 2}. In such a case the other vertices
are independent and adjacent to v, and f assigns ∅ to them. Therefore G = K1,n.

(b) There exist two vertices v and u for which (f(u), f(v)) = ({1}, {2}) and f(w) = ∅
for the other vertices. Note that the vertices in V (G) \ {u, v} are independent and
adjacent to both u and v. Therefore, G ∈ {K2,n,K

∗
2,n}.

We now give the characterization of all connected graphs G with γoir2(G) = 3. To
this aim, we define the families Ri, 1 ≤ i ≤ 7, of graphs G as follows. We first fix some
notation. For given vertices x, y and z, we set

Vx = {v ∈ V (G) | N(v) = {x}},
Vx,y = {v ∈ V (G) | N(v) = {x, y}},
Vx,y,z = {v ∈ V (G) | N(v) = {x, y, z}},

where Vx ∪ Vx,y ∪ Vx,y,z is an independent set.
R1: We begin with two nonadjacent vertices x and y. Then, we add the nonempty
sets Vx and Vx,y.
R2: The family of all graphs G obtained by adding the edges xy to the graphs in the
family R1.
R3: We begin with three vertices x, y and z. Then one of the following conditions
holds. (a3) Vx,y, Vy,z 6= ∅, (b3) only one of Vx,y and Vy,z is empty set and Vx,y,z 6= ∅,
(c3) Vx,y ∪ Vy,z = ∅ and |Vx,y,z| ≥ 3.
R4: We begin with an edge xy and a vertex z. Then (a4) Vy,z 6= ∅, or (b4) Vy,z = ∅
and Vx,y,z 6= ∅.
R5: We begin with a path xyz. Then (a5) Vx,y ∪ Vy,z 6= ∅, or (b5) Vx,y ∪ Vy,z = ∅ and
|Vx,y,z| ≥ 2.
R6: We begin with the edges xy and xz. Then one of the following conditions holds.
(a6) Vx,y 6= ∅, (b6) Vx,y = ∅ and both Vy,z and Vx,y,z are nonempty set, (c6) Vx,y = ∅
and |Vx,y,z| ≥ 2.
R7: We begin with a cycle xyzx. Then (a7) Vx,y, Vy,z 6= ∅, or (b7) Vx,y or Vy,z equals
empty set and Vx,y,z 6= ∅.

Theorem 3.2. Let G be a connected graph of order n. Then, γoir2(G) = 3 if and only
if G ∈

⋃7
i=1Ri.
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Proof. If G ∈ R1 ∪ R2, then the function g with g(x) = {1, 2}, g(y) = {1} and
g(v) = ∅ for the other vertices is an OI2-rD function of G with weight γoir2(G) = 3.
If G ∈

⋃7
i=3Ri, then the function g with g(x) = g(z) = {1}, g(y) = {2} and g(v) = ∅

for the other vertices defines an OI2-rD function of G with weight γoir2(G) = 3.
Conversely, let f : V (G)→ P({1, 2}) be a minimum OI2-rD function with weight

ω(f) = 3. We consider two cases depending on V{1,2}(= {v ∈ V (G) | f(v) = {1, 2}}).
Case 1. Let V{1,2} 6= ∅. Then, there exists a unique vertex x with weight {1, 2} under
f and one vertex y, with |f(y)| = 1. Note that the other vertices are assigned ∅ under
f and belong to Vx ∪ Vx,y. If Vx = ∅, then γoir2(G) = 2 which is impossible. Also, if
Vx,y = ∅, then either γoir2(G) = 2 or G is disconnected, a contradiction. Therefore,
G ∈ R1 ∪R2.
Case 2. Let V{1,2} = ∅. We assume that (f(x), f(y), f(z)) = ({1}, {2}, {1}) for some
vertices x, y and z, and f(v) = ∅ for the other vertices v. Note that the other vertices
v are independent and adjacent to y, necessarily.

Let first G[{x, y, z}] be edgeless. If both Vx,y and Vy,z are nonempty, then G ∈ R3.
If both Vx,y and Vy,z are empty, then |Vx,y,z| ≥ 3, otherwise γoir2(G) = 2 or G is
disconnected. If only one of Vx,y and Vy,z, say Vx,y, is empty, then Vx,y,z 6= ∅, for
otherwise G would be disconnected. This shows that G ∈ R3.

Let y be adjacent to only one of x and z, say x, and xz /∈ E(G). If Vy,z = ∅, then
Vx,y,z 6= ∅, for otherwise G is disconnected. So, G ∈ R4.

Let G[{x, y, z}] be isomorphic to the path xyz. Let Vx,y ∪ Vy,z = ∅. If |Vx,y,z| ≤ 1,
then γoir2(G) = 2 which is impossible. Therefore, |Vx,y,z| ≥ 2.

Suppose that xy, xz ∈ E(G) and yz /∈ E(G). Suppose that Vx,y = ∅. Then we must
have Vx,y,z 6= ∅, for otherwise γoir2(G) = 2. If |Vx,y,z| = 1, then Vy,z 6= ∅, for otherwise
we have again γoir2(G) = 2. Therefore, Vy,z 6= ∅. This implies that G ∈ R6.

Finally, suppose that G[{x, y, z}] is isomorphic to the cycle xyzx. Suppose that
at least one of Vx,y and Vy,z is empty set. Then Vx,y,z is nonempty set, for otherwise
γoir2(G) = 2. This completes the proof.

In what follows, we characterize all graphs G of order n with large
γoir2(G) ∈ {n− 1, n}.

Proposition 3.3. Let G be a graph of order n. Then γoir2(G) = n if and only if
G = mK2 ∪Kt, where n = 2m+ t.

Proof. Let G = mK2 ∪Kt. Then it is clear γoir2(G) = 2m+ t = n.
Conversely, let γoir2(G) = n. Let G have a vertex v of degree at least 2. Then

by assigning ∅ to v, {1} to one neighbor of v and {2} to other vertices, we obtain
γoir2(G) ≤ n− 1, a contradiction. Therefore, every vertex of G has degree at most 1,
that is, G = mK2 ∪Kt.

Let Kt
n be a graph obtained from complete graph Kn by joining t leaves to t

vertices of Kn, where 0 ≤ t ≤ n. We note that K0
n = Kn and Kn

n = Kn ◦K1. We also
observe that if G is a graph obtained from H by joining t leaves to the t vertices of H,
then γoir2(G) ≤ γoir2(H) + t.
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Theorem 3.4. Let G be a connected graph of order n. Then γoir2(G) = n− 1 if and
only if G ∈ {P3, P4,K

t
m} for some m ≥ 3 and 0 ≤ t ≤ m.

Proof. The equality is trivial for G ∈ {P3, P4}. Let G be isomorphic to Kt
m for some

m ≥ 3 and 0 ≤ t ≤ m. It is not difficult to see that the function f assigning ∅ to only
one vertex u of Km, {1} to the leaf adjacent to it (if any) and one vertex v ∈ V (Kt

m)
different from u, and {2} to the other vertices is an OI2-rD function with weight
γoir2(Kt

m) = m+ t− 1 = n− 1.
Conversely, let G 6= P3, P4 and γoir2(G) = n− 1. Let f = (V∅, V{1}, V{2}, V{1,2}) be

a γoir2(G)-function with weight n− 1. Suppose that u and v are two distinct vertices
of G with deg(u), deg(v) ≥ 2. Suppose that uv /∈ E(G). Then, we deal with one of the
following possibilities depending of N(u) and N(v).

(a) Let N(u) ∩ N(v) 6= ∅ and let x ∈ N(u) ∩ N(v). Then the assignment
(g(u), g(v), g(x)) = (∅, ∅, {1}) and g(w) = {2} for the other vertices w defines
an OI2-rD function of G with weight n− 2.

(b) Let N(u) ∩ N(v) = ∅. Let x, y ∈ N(u) and x′, y′ ∈ N(v). It is easily seen that
the assignment

(h(u), h(v), h(x), h(y), h(x′), h(y′)) = (∅, ∅, {1}, {2}, {1}, {2})

and h(w) = {2} for the other vertices w defines an OI2-rD function of G with
weight n− 2.

We deduce from the the both above situations that γoir2(G) ≤ n − 2, which is
a contradiction. Therefore, uv ∈ E(G). This shows that the subgraph induced by the
vertices of degrees at least two is a complete graph Km. Therefore, G is obtained from
Km by joining some leaves to some vertices of Km. Now if m = 1, then G ∼= K1,t for
some t ≥ 2. In such a case G ∼= P3 or γoir2(G) < n− 1 which are impossible. If m = 2,
then G is isomorphic to a double star Sp,q. In such a case G ∼= P4 or γoir2(G) < n− 1
which are again impossible. Therefore, m ≥ 3. Suppose now that there exists a vertex
u of Km which is adjacent to two leaves x and y. Let v ∈ V (Km) \ {u}. Then

(k(v), k(x), k(y), k(u)) = (∅, ∅, ∅, {1, 2})

and k(w) = {1} for the other vertices w defines an OI2-rD function of G with weight
n− 2. This is a contradiction. Therefore, every vertex of Km is adjacent to at most
one leaf. This completes the proof.

Let G be a graph of order n. If γoir2(G) = n − 2 and f = (V∅, V{1}, V{2}, V{1,2})
is a γoir2(G)-function, then

|V∅|+ |V{1}|+ |V{2}|+ |V{1,2}| = n,

|V{1}|+ |V{2}|+ 2|V{1,2}| = n− 2,
|V∅| = |V{1,2}|+ 2.

Let M be a matching of Kn with |M | ≥ 1, and let Kn −M be a graph obtained
from the complete graph Kn by removing the edges in M . Let (Kn −M)t be a graph
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obtained from the graph Kn −M by joining t leaves to t vertices of Kn −M , where
0 ≤ t ≤ dn

2 e. Let P
+
n , (C+

n ) be a graph obtained from Pn (Cn) by attaching a leaf
to any vertex of Pn (Cn) and let for (m ≥ 4), P ∗m, (C∗m) be a graph obtained from
Pm (Cm) by attaching some leaves (at least 2 vertices) to some vertices (one leaf to
a vertex) of Pm (Cm).

Proposition 3.5. Let G be a connected graph of order n ≥ 5. If

G ∈ {P5, P
+
5 , P6, C5, C

+
5 , C6, P

∗
4 , C

∗
4 , (Km −M)t},

where 0 ≤ t ≤ dm
2 e and t+m = n, then γoir2(G) = n− 2.

Proof. It is easily seen that if G ∈ {P5, P
+
5 , P6, C5, C

+
5 , C6, P

∗
4 , C

∗
4}, then

γoir2(G) = n− 2. Let G = (Km −M)t. Let t = 0 and M be a matching of Kn.
Then, every vertex of δ(Kn −M) = n − 2. Therefore γoir2(G) = n − 2. Let t ≥ 1.
Since |M | ≥ 1 we could assign the value ∅ only to two vertices of Kn −M . If viui is a
pendant edge where vi is a vertex of Kn −M and ui is a leaf, then we must assign
{1, 2} to vi and ∅ to ui or we must assign {1} or {2} to vi and {1} to ui. Therefore,
for any t attached vertices, the weight of G = (Kn −M)t will be increased t units.
That is w((Kn −M)t) = n− 2 + t. Therefore, for the given graphs G constructed as
above of order |V (G)|, γoir2(G) = |V (G)| − 2.

The converse of the Proposition 3.5 may be easily solved. We pose it as a problem
at the end of the paper.

4. COMPLEXITY

We consider in this section the decision problem associated with the OI2-rD
functions. We first consider the problem of deciding whether a graph G has the
OI2-rD number at most a given integer. That is stated in the following decision
problem.

OI2-RD problem
INSTANCE: A graph G and an integer k ≤ |V (G)|.
QUESTION: Is γoir2(G) ≤ k?

Our aim is to show that the problem is NP-complete for the planar graphs with
maximum degree at most four. To this end, we make use of the well-known
INDEPENDENCE NUMBER PROBLEM (IN problem) which is known to be
NP-complete from [5].

IN problem
INSTANCE: A graph G and an integer k ≤ |V (G)|.
QUESTION: Is α(G) ≥ k?

Moreover, the problem above remains NP-complete even when restricted to triangle-free
graphs and some planar graphs. Indeed, we have the following result.
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Theorem 4.1 ([5]). The IN problem is NP-complete even when restricted to
triangle-free graphs and planar graphs of maximum degree at most three.

Theorem 4.2. The OI2-rD problem is NP-complete even when restricted
to triangle-free graphs and planar graphs with maximum degree at most four.

Proof. Let G be with the set of vertices V (G) = {v1, . . . , vn} be a triangle-free graph
or a planar graph with maximum degree ∆(G) ≤ 3. For any 1 ≤ i ≤ n, we add a copy
of the path P3 with central vertex ui. We now construct a graph G′ by joining vi to ui,
for each 1 ≤ i ≤ n. Clearly,

(a) if G is triangle-free, then G′ is triangle-free, as well:
(b) if G is a planer graph with ∆(G) ≤ 3, then G′ is a planer graph with ∆(G′) ≤ 4.

Moreover, |V (G′)| = 4n.
Let f be γoir2(G′)-function. Since ui is adjacent to two leaves, the sum of cardinal-

ities of the assigned sets to ui and its two leaves under f must be two. So, without loss
of generality, we may consider that f(ui) = {1, 2}, and that f assigns ∅ to both leaves
adjacent to ui for each 1 ≤ i ≤ n. Since V∅ is independent, the number of vertices
vi ∈ V (G) which can be assigned ∅ under f is at most α(G). Furthermore, the other
vertices of V (G) are assigned non-empty sets under f . Consequently, we obtain that

γoir2(G′) ≥ 2n+ (n− α(G)) = 3n− α(G).

On the other hand, let I be an α(G)-set. It is easy to observe that the function

g(v) =


{1, 2} if v ∈ {u1, . . . , un},
∅ if v is a leaf or v∈ I,
{1} or {2} otherwise.

is an OI2-rD function of G′ with weight 3n − α(G), which leads to the equality
γoir2(G′) = 3n−α(G). Now, by taking j = 3n− k, it follows that γoir2(G′) ≤ j if and
only if α(G) ≥ k, which completes the reduction. Since the IN problem is NP-complete
for both triangle-free, and the planar graphs of maximum degree at most three, we
deduce that the OI2-rD problem is NP-complete for triangle-free graphs as well, and
it is NP-complete for planar graphs of maximum degree at most four.

As a consequence of Theorem 4.2, we conclude that the problem of computing
the OI2-rD number is NP-hard even when restricted to planar graphs with maximum
degree at most four and triangle-free graphs.

5. BOUNDS

Obviously, every OI2-rD function of a graph is a 2-rainbow dominating function, and
so γoir2(G) ≥ γr2(G) holds for every graph G. The equality occurs for stars, however
the difference between these two parameters can be arbitrarily large. For example, for
the complete graphs of large order, we have γoir2(Kn) = n− 1, while γr2(Kn) = 2.
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It is clear that if H is an induced subgraph of a graph G of order n, then

γoir2(G) ≤ n− |V (H)|+ γoir2(H).

Now by considering H as a diametral path on diam(G) + 1 vertices in G (in the case
when G is connected) and making use of Observation 2.1, we have

γoir2(G) ≤ (n− diam(G)− 1) + γoir2(H) = n−
⌊diam(G)

2

⌋
.

Note that the family of all paths achieve this bound.
In what follows, we shall see the upper bound for outer independent 2-rainbow

domination number in terms of independence number or vertex cover number. For
this aim we introduce a family of graphs as follows. Let G be family of graphs G
constructed from a graph H,

(a) by attaching at least two leaves to the every vertex of H, and possibly for some
vertices x, degG−H(x) ≥ 3, or,

(b) by attaching at least one leaf to the every vertex of H, moreover, for any vertex x
(possibly other than isolated vertex in H), degG−H(x) ≥ 2, or for two adjacent
vertices in H like u, v we must have degG−H(u) + degG−H(v) ≥ 4, or any two
non adjacent vertices in H like u, v must be neighbored by a vertex w in G, and
degG−H(u) + degG−H(v) ≥ 5, or beside, any k independent vertices in H have at
least k independent neighbors in G−H of degree k in G.

Moreover, in both of parts (a) and (b), G−H is an independent set.

Proposition 5.1. For any graph G of order n with no isolated vertices,

γoir2(G) ≤ 2β(G).

Furthermore, the equality holds if and only if G ∈ G.

Proof. Let S be a maximum independent set in G of size α(G). Let
f : V (G)→ P({1, 2}) be a function with f(v) = {1, 2} for v ∈ V −S, and f(x) = ∅ for
otherwise. It is easy to see that f is an OI2-rD function of G with weight 2(n− α(G)).
Since α(G) + β(G) = n (the well known Gallai theorem [4]), the upper bound follows.

For equality, let G ∈ G and G satisfy in the conditions (a) and (b). Then we must
assign {1, 2} to every vertex of H and ∅ to the all vertices of V (G) \ V (H). On the
other hand, it is readily seen that α(G) = |V (G) \ V (H)|. Therefore

γoir2(G) = 2(n(G)− α(G)) = 2β(G).

Conversely, let the equality hold. Let S be an α(G)-set and H be the subgraph
induced by V (G) \ S. If a vertex v ∈ H has now leaf in G, then by assigning {1} to v,
{1, 2} to the other vertices in H and ∅ to vertices of G−H, achieve a contradiction.
Thus it is easy to see that, at least one leaf is adjacent to each vertex of G−S. If each
vertex in H has at least two leaves in G, then G satisfies in condition (a). Let v be
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a vertex with only one leaf in G−H. If v does not satisfy in condition (b), there are
some cases.
(1) If degG−H(v) = 1, then by assigning {1, 2} to V (H−v) and {1} to the leaf adjacent
to v in G and ∅ to others, we have an OI2-rD function with weight at most 2β(G)− 1,
a contradiction.
(2) If there exists two adjacent vertices in H like u, v such that degG−H(u) +
degG−H(v) ≤ 3, and let degG−H(u) = 1 and degG−H(v) ≤ 2, then by assigning
{1, 2} to V (H − u), {1} to the leaf adjacent to u and ∅ to others, we have an OI2-rD
function with weight at most 2β(G)− 1, a contradiction.
(3) If there exists two non adjacent vertices inH like u, v that are neighbored by a vertex
w in G, and degG−H(u) + degG−H(v) ≤ 4, then by assigning {1, 2} to V (H − {u, v}),
{1} to the leaves adjacent to u and v and {2} to w and ∅ to others, we have an OI2-rD
function with weight at most 2β(G)− 1, a contradiction.
(4) If there exist k independent vertices {v1, v2, . . . , vk} in H with at most k − 1
independent neighbors {u1, u2, . . . , uk−1} in G−H of degree k in G, by assigning {1}
to some of (not all) uis, {2} to other of k − 1 uis, {1} to each leaf adjacent to vj in
G −H, {1, 2} to the vertices of V (H − {v1, v2, . . . , vk}) and ∅ to the other vertices,
we have an OI2-rD function with weight at most 2β(G)− 1, a contradiction. Thus, if
the equality holds, then G ∈ G. Therefore, the proof ends.

Let G be a connected graph with finite girth g. As an immediate consequence of
Observation 2.2, we have

γoir2(G) ≤ n−
⌊g

2

⌋
+

⌈g
4

⌉
−

⌊g
4

⌋
.

Furthermore, this bound is sharp for cycles.

Theorem 5.2. Let G be a K1,r-free graph of order n with s′ strong support vertices.
Then

γoir2(G) ≥ 2(n+ s′)
1 + r

and this bound is sharp. In particular, we have the sharp lower bound

γoir2(G) ≥ 2(n+ s′)
∆ + 2 .

Proof. Let f be a γoir2(G)-function. We define A as V∅∩N(V{1,2}). Since G is K1,r-free
and V∅ is independent, every vertex in V{1,2} is adjacent to at most r− 1 vertices in A.
Thus,

|A| ≤ (r − 1)|V{1,2}|.

On the other hand, every vertex in V∅ \A has at least two neighbors in V{1} ∪ V{2}.
Therefore,

2|V∅ \A| ≤ (r − 1)(|V{1}|+ |V{2}|).
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Moreover, we may assume that all the strong support vertices belong to V{1,2}. This
shows that |V{1,2}| ≥ s′. We now have

2(n− γoir2(G) + s′) ≤ 2(n− |V{1}| − |V{2}| − |V{1,2}|) = 2|V∅|
= 2|A|+ 2|V∅ \A|
≤ (r − 1)(|V{1}|+ |V{2}|+ 2|V{1,2}|)
= (r − 1)γoir2(G).

So,

γoir2(G) ≥ 2(n+ s′)
1 + r

.

For sharpness consider Kp ◦ Kr−1 for r ≥ 2. Then γoir2(G) = 2p, n = pr and
s′ = p. This implies that

γoir2(G) = 2(n+ s′)
r + 1 .

For the other family of sharpness graph, let G be a graph of order r + 1 ≥ 4 with two
vertices v, u of degree r − 1 and r − 1 vertices of degree 2 for which, each vertex of
degree 2 is adjacent to u and v. Then G is K1,r-free graph and

2 = γoir2(G) = 2(n+ s′)
r + 1 .

Let r = 3 (in such a case G is claw-free). We begin with a cycle v1v2 . . . v2pv1. Add
2p new vertices u1, . . . , u2p and join ui to both vi and vi+1 (mod 2p), for 1 ≤ i ≤ 2p.
It is easy to see that the function f : V (G) → P({1, 2}) defined by f(v2i−1) = {1},
f(v2i) = {2} for 1 ≤ i ≤ p, and f(uj) = ∅ for 1 ≤ j ≤ 2p is an OI2-rD function of G
with weight γoir2(G) = n

2 .
Finally, for any graph G with maximum degree ∆, the graph G is a (∆ + 1)-free.

Therefore, using first part, we have the desired result.

6. TREES

Our aim in this section is to determine some bounds on the OI2-rD number of trees.
We bound the OI2-rD number of trees from above and characterize all trees attaining
the bound. Let S(T ) and L(T ) be the set of support vertices and the set of leaves
of a tree T , respectively. Let T be a tree with s(T ) = |S(T )| and l(T ) = |L(T )|. In
order to characterize all trees T attaining the upper bound given in the next theorem,
we introduce a partition of V (T ) as follows. Let T ′ be a tree as a component of the
forest F obtained from T by removing all leaves and support vertices of T . Let v be
a leaf of T ′. Label each vertex of T ′ with its distance from v mod 2. This produces two
sets A(T ′) = {u | dT ′(u, v) iseven} and B(T ′) = {u | dT ′(u, v) is odd} that partition
the vertices of T ′. We now have the partition P = {S(T ) ∪ L(T ), A(T ′), B(T ′)}T ′ of
the set of vertices of T . For the sake of convenience, we let A(T ) = ∪T ′A(T ′) and
B(T ) = ∪T ′B(T ′). We can choose the vertex v for which, |A(T )| ≥ |B(T )|.



610 Zhila Mansouri and Doost Ali Mojdeh

Theorem 6.1. Let T be a tree of order n ≥ 2. Then,

γoir2(T ) ≤
⌊n+ 3s(T )− l(T )

2

⌋
.

This bound is sharp if and only if one of the following statements is fulfilled.
(1) Every support vertex is strong and |A(T )| − |B(T )| ≤ 1.
(2) here exists only one weak support vertex in T . Moreover, it is adjacent to a vertex

in A(T ) and |A(T )| − |B(T )| = 1.
Proof. We make use of the notations which were introduced just before the theorem.
Clearly, n(F ) = n(T )− s(T )− l(T ). Suppose that f ′ assigns ∅ to the vertices in A(T ),
and {1} or {2} to the vertices in B(T ) so that every vertex of T ′ which belongs to
A(T ) is adjacent to at least one vertex assigned with {1} and at least one vertex
assigned with {2} under f ′. Iterate this process for all components T ′ of F . We now
define g : V (T )→ P({1, 2}) by

f(u) =


f ′(u) if u ∈ A(T ) ∪ B(T ),
{1, 2} if u ∈ S(T ),
∅ if u ∈ L(T ).

It is not difficult to check that f is an OI2-rD function of T . Therefore,

γoir2(T ) ≤ ω(f) =
⌊n(F )

2

⌋
+ 2s(T )

=
⌊n− s(T )− l(T )

2

⌋
+ 2s(T )

=
⌊n+ 3s(T )− l(T )

2

⌋
.

Let
γoir2(T ) =

⌊n+ 3s(T )− l(T )
2

⌋
.

Suppose to the contrary that T has at least two weak support vertices x and y.
If all vertices of T are leaves or support vertices, then

γoir2(T ) < 2s(T ) =
⌊n+ 3s(T )− l(T )

2

⌋
which is impossible. Therefore, S(T ) ∪ L(T ) $ V (T ). Now let x′ and y′ be the leaves
adjacent to x and y, respectively. Let F ′ be obtained from T by removing all leaves and
support vertices except x and y. Similar to the process described for F , we have

γoir2(T ) ≤
⌊n(F ′)

2

⌋
+ 2(s(T )− 2) + 2

=
⌊n− s(T )− l(T ) + 2

2

⌋
+ 2s(T )− 2

<
⌊n+ 3s(T )− l(T )

2

⌋
,

a contradiction. Therefore, T has at most one weak support vertex.
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Suppose to the contrary that the condition (1) does not hold. In what follows, we
prove the condition (2). We first show that |A(T )| − |B(T )| = 1.

Let |A(T )| = |B(T )|. Since the condition (1) does not hold, it follows that T has
precisely one weak support vertex x. Let F ′ be obtained from T by removing all leaves
and support vertices except x and let x′ be the unique leaf adjacent to x. We make
use of a process similar to that presented for the proving the upper bound for v = x as
a leaf of a component T ′′ of F ′. Therefore, x ∈ A(T ′′). Since |A(T )| = |B(T )|, we may
assume that ∑

T ′′

|A(T ′′)| =
∑
T ′′

|B(T ′′)|+ 1

taken over all components T ′′ of F ′. Assigning ∅ to the vertices in (∪T ′′A(T ′′)∪L(T ))\
{x′}, {1, 2} to all vertices in S(T ) \ {x}, and {1} or {2} to the other vertices (so that
each non-leaf vertex w assigned with ∅ is adjacent to at least one vertex assigned with
{1} and at least one vertex assigned with {2}) we obtain an OI2-rD function with
weight ⌊n− s(T )− l(T )

2

⌋
+ 2(s(T )− 1) + 1 <

⌊n+ 3s(T )− l(T )
2

⌋
,

a contradiction.
Now let |A(T )| − |B(T )| 6= 1. Since the equality |A(T )| = |B(T )| is impossible, we

may assume that |A(T )| ≥ |B(T )|+ 2. Assigning ∅ to the leaves and the vertices in
A(T ), {1, 2} to the support vertices, and {1} or {2} to the other vertices so that each
non-leaf vertex w assigned with ∅ is adjacent to at least one vertex assigned with {1}
and at least one vertex assigned with {2} defines an OI2-rD function of T with weight
at most

|B(T )|+ 2s(T ) <
⌊n+ 3s(T )− l(T )

2

⌋
which contradicts the equality. Therefore, |A(T )| − |B(T )| = 1.

Now let x be the unique weak support vertex of T and x′ be the leaf adja-
cent to x. Suppose to the contrary that x is adjacent to a vertex z ∈ B(T ′), for
some T ′. Then, assigning {1, 2} to all strong support vertices, ∅ to all vertices in
A(T ) ∪ (L(T ) \ {x′}) ∪ {x}, and {1} or {2} to the other vertices so that each non-leaf
vertex w assigned with ∅ is adjacent to at least one vertex assigned with {1} and at
least one vertex assigned with {2} is an OI2-rD function of T with weight at most

n− s(T )− l(T )− 1
2 + 2(s(T )− 1) + 1 <

⌊n+ 3s(T )− l(T )
2

⌋
,

which is again a contradiction. The above discussion shows that T satisfies the
condition (2).

Conversely, let f be a γoir2(T )-function. Let the condition (1) hold. Since all
support vertices are strong, we may assume that f assigns {1, 2} to all support vertices
and ∅ to all leaves. Taking into account, the fact that A(T ) and B(T ) give us a partition
of F into disjoint paths P2, (possibly one of them is P1), we observe that at most one
vertex of each of the paths can be assigned ∅ by f . This shows that

γoir2(T ) = ω(f) ≥ n− s(T )− l(T )
2 + 2s(T ) =

⌊n+ 3s(T )− l(T )
2

⌋
,

implying the equality.
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Suppose now that the condition (2) holds. In such a case, the sets A(T ) and B(T )
give us a partition of F into disjoint paths P2 and one singleton. Now consider the
forest F . Suppose that |A(T )| = |B(T )| + 1. Then, at least n−s(T )−l(T )−1

2 vertices
of F and at most n−s(T )−l(T )+1

2 vertices of F must be assigned ∅ under f . If ex-
actly n−s(T )−l(T )−1

2 vertices of F are assigned ∅ by f (the vertices in B(T )), then
f(x′) ∈ {{1}, {2}} and f(x) = ∅ since x is adjacent to a vertex in A(T ) by (2). So,

γoir2(T ) = ω(f) = n− s(T )− l(T ) + 1
2 + 2(s(T )− 1) + 1 =

⌊n+ 3s(T )− l(T )
2

⌋
.

Now let n−s(T )−l(T )+1
2 vertices of F be assigned ∅ under f (the vertices in A(T )).

Since x is adjacent to a vertex in A(T ), we have (f(x), f(x′)) = ({1, 2}, ∅) or
f(x), f(x′) ∈ {{1}, {2}}. Therefore,

γoir2(T ) = ω(f) = n− s(T )− l(T )− 1
2 + 2s =

⌊n+ 3s(T )− l(T )
2

⌋
implying the desired equality. This completes the proof.

Lemma 6.2. Let T be a tree of order n with s′ strong support vertices. Then,
γoir2(T ) ≥ β(T ) + s′ and this bound is sharp.

Proof. Let f be a γoir2(T )-function. We assume that f assigns {1, 2} to all strong
support vertices of T and ∅ to all leaves adjacent to them. This shows that |V{1,2}| ≥ s′.
On the other hand,

γoir2(T ) = |V{1}|+ |V{2}|+ 2|V{1,2}| ≥ n− α(T ) + s′ = β(T ) + s′.

The bound is sharp for a tree T obtained from a tree T ′ by joining at least two leaves
to each vertex of T ′.

Theorem 6.3. For any tree T of order n ≥ 2, β(T ) + 1 ≤ γoir2(T ) ≤ 2β(T ).

Proof. The upper bound is deduced by Proposition 5.1. For the lower bound, we
proceed by induction on the order n of T . The result is obvious when n = 1. On the
other hand, γoir2(K1,n−1) = 2 = β(K1,n−1) + 1 for n ≥ 2. Therefore, we may assume
that diam(T ) ≥ 3. If T is isomorphic to a double star Sp,q, 1 ≤ p ≤ q, we then deal
with two possibilities. If p = 1, then γoir2(Sp,q) = 3 = β(Sp,q) + 1. If p ≥ 2, then
γoir2(Sp,q) = 4 > 3 = β(Sp,q) + 1. So, in what follows we assume that diam(T ) ≥ 4.
This implies that n ≥ 5.

Suppose that the lower bound holds for all trees T ′ of order 1 ≤ n′ < n. Let T be
a tree of order n. We consider two cases depending on the behavior of the support
vertices of T .
Case 1. Suppose that there exists a strong support vertex of T . In such a case,
the lower bound is an immediate result of Lemma 6.2.
Case 2. Suppose that all support vertices of T are weak. Let r and u be two vertices
with d(r, u) = diam(T ). We root T at r. Let v be the parent of u and w be the parent
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of v. Note that in such a case we have deg(v) = 2. We now consider T ′′ = T − u− v.
It is easy to check that β(T ) = β(T ′′) + 1.

Let f be a γoir2(T )-function. Suppose that f(w) = {1, 2}. Then f(v) = ∅ and
f(u) = {1} or {2}, necessarily. This shows that f ′′ = f |V (T ′′) is an OI2-rD function
of T ′′ with weight γoir2(T )− 1. Therefore,

β(T ) = β(T ′′) + 1 ≤ γoir(T ′′) ≤ γoir(T )− 1

by the induction hypothesis.
Suppose that f(w) = ∅. Therefore, |f(v)|+ |f(u)| ≥ 2. We may assume, without

loss of generality, that f(v) = {1, 2} and f(u) = ∅. This shows that the assign-
ment (g(u), g(v), g(w)) = ({1}, ∅, {2}) and g(x) = f(x) for the other vertices defines
a γoir(T )-function. Therefore, g′′ = g |V (T ′′) is an OI2-rD function of T ′′ with weight
γoir2(T )− 1. Therefore,

β(T ) = β(T ′′) + 1 ≤ γoir2(T ′′) ≤ γoir2(T )− 1.

Let f(w) = {2} (f(w) = {1}). This implies that f(v) = ∅ and f(u) = {1}
(f(u) = {2}). In such a case, we have again β(T ) + 1 ≤ γoir2(T ) similar to the case
f(w) = ∅. This completes the proof of the lower bound.

Our final result in this section is to show that every integer value in the range of
Theorem 6.3 is realizable for trees, that is, all integer values between the lower and
upper bounds in Theorem 6.3 are realizable.

Theorem 6.4. An ordered pair (a, b) is realizable as the vertex cover number and
OI2-rD numbers of some non-trivial tree if and only if a+ 1 ≤ b ≤ 2a.

Proof. We consider two cases.
Case 1. Let b = a+1. If a = 1, then it suffices to consider the star K1,t with β(K1,t) = 1
and γoir2(K1,t) = 2. So, we assume that a ≥ 2. We consider the corona T = K1,a−1◦K1.
It is then easy to check that, β(T ) = a and γoir2(T ) = a+ 1.
Case 2. Let b > a+ 1. Suppose that T ′ is obtained from the star K1,a by subdividing
a− 1 edges. Let v1, . . . , va−1 be the new vertices. We now join one leaf to each vertex
in {v1, . . . , vb−a−1}. Let T be the obtained tree. It is easily verified that β(T ) = a. On
the other hand, the function f of G assigning {1, 2} to v1, . . . , vb−a−1, ∅ to the leaves
adjacent to v1, . . . , vb−a−1 and the weak support vertices different from the central
vertex, {2} to the central vertex, and {1} to the other vertices is γoir2(T )-function
with weight 2(b − a − 1) + a − (b − a − 1) + 1 = b, as desired. This completes
the proof.

7. CONCLUSIONS AND PROBLEMS

(1) Prove or disprove: Let G be a connected graph of order at least 3. Then,
γoir2(G) = γr2(G) if and only if every induced subgraph of G is a union of cycles,
paths, stars and complete bipartite graphs Km,n, m, n ≤ 4.
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(2) For a graph G, give some necessary and sufficient conditions in which
γoir2(G) = n− 2.

(3) Characterize all K1,r-free (or at least claw-free) graphs for which the lower bound
given in Theorem 5.2 holds with equality.
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