1403/01/09
حسین میلانی مقدم

حسین میلانی مقدم

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم پایه
نشانی:
تلفن: 9378208177

مشخصات پژوهش

عنوان
Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Multiwalled carbon nanotube , Maghemite, Nanoadsorbent , Cadmium , Adsorption , Environmental and health effects , Water purification
سال
2016
مجله JOURNAL OF NANOPARTICLE RESEARCH
شناسه DOI
پژوهشگران Hossain Milani Moghaddam ، Maliheh Pashai Gatabi ، Mohsen Ghorbani

چکیده

Adsorptive potential of maghemite decorated multiwalled carbon nanotubes (MWCNTs) for the removal of cadmium ions from aqueous solution was investigated. The magnetic nanoadsorbent was synthesized using a versatile and cost effective chemical route. Structural, magnetic and surface charge properties of the adsorbent were characterized using FTIR, XRD, TEM, VSM analysis and pH_PZC determination. Batch adsorption experiments were performed under varied system parameters such as pH, contact time, initial cadmium concentration and temperature. Highest cadmium adsorption was obtained at pH 8.0 and contact time of 30 min. Adsorption behavior was kinetically studied using pseudo first-order, pseudo second-order, and Weber–Morris intra particle diffusion models among which data were mostly correlated to pseudo second-order model. Adsorbate-adsorbent interactions as a function of temperature was assessed by Langmuir, Freundlich, Dubinin–Radushkevich (D-R) and Temkin isotherm models from which Freundlich model had the highest consistency with the data. The adsorption capacity increased with increasing temperature and maximum Langmuir’s adsorption capacity was found to be 78.81 mg g−1 at 298 K. Thermodynamic parameters and activation energy value suggest that the process of cadmium removal was spontaneous and physical in nature, which lead to fast kinetics and high regeneration capability of the nanoadsorbent. Results of this work are of great significance for environmental applications of magnetic MWCNTs as promising adsorbent for heavy metals removal from aqueous solutions.