1403/02/01
حامد سلیمی کناری

حامد سلیمی کناری

مرتبه علمی: استادیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده مهندسی و فناوری
نشانی:
تلفن: 01135305105

مشخصات پژوهش

عنوان
Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporatedwith nanocrystalline β-tricalciumphosphate (β-TCP) particleswere tailor made as scaffolds for bone tissue engineering. β- TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogelswas investigated. Itwas found that the homogeneous distribution of β-TCP nanoparticles through the hydrogelmatrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRDmeasurements represente
سال
2020
مجله International Journal of Biological Macromolecules
شناسه DOI
پژوهشگران Rahil Ghaffari ، Hamed Salimi-Kenari ، Farahnaz Fahimipour ، Sayed Mahmood Rabiee ، Hassan Adeli ، Erfan Dashtimoghadam

چکیده

Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporatedwith nanocrystalline β-tricalciumphosphate (β-TCP) particleswere tailor made as scaffolds for bone tissue engineering. β- TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogelswas investigated. Itwas found that the homogeneous distribution of β-TCP nanoparticles through the hydrogelmatrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRDmeasurements represented the formation of apatite layer on the surface of nanocomposite hydrogels after immersion in the SBF solution, which implies their bioactivity. Cell culture assays confirmed biocompatibility of the developed hybrid hydrogels in vitro. The obtained results converge to offer dextran/β-TCP nanocomposite hydrogels as promising scaffolds for bone regeneration applications.