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The sp3 Hybrid Orbitals in NH3 and H2O
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The sp3d Hybrid Orbitals in PCl5
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The sp3d2 Hybrid Orbitals in SF6
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Molecular Orbital Theory:
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Formation of Sigma Molecular Orbitals:

1. Overlapping of two 1s atomic orbital
Example: H2

2. Overlapping of two px atomic orbital

+ bonding

antibonding

bonding

antibonding
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3. Overlapping of  an s and px atomic orbitals

4. Overlapping of px and dz2 or dx2-y2

bonding

antibonding

bonding

antibonding



Computational chemistry:

Computational chemistry uses result of theoretical chemistry incorporated into

efficient computer programmed to calculate structure and properties of

molecule.

It calculate the properties of molecule such as structure, relative energy,

charge distribution, dipole moment, vibrational frequency, reactivity and other

spectroscopic quantity.
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• Classical Methods:

1. Molecular Mechanics.

2. Molecular Dynamics.

• Quantum Mechanics Methods:

1. Semi empirical Methods.

2. Ab initio Methods.

3. Density functional Theory.
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The Time-Dependent Schrödinger Equation:

Classical mechanics applies only to macroscopic particles. For microscopic

“particles” we require a new form of mechanics, called quantum mechanics.

We now consider some of the contrasts between classical and quantum

mechanics. For simplicity a one-particle, one-dimensional system will be

discussed.
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In classical mechanics the motion of a particle is governed by Newton’s

second law:

where F is the force acting on the particle, m is its mass, and t is the time; a is the

acceleration, given by a = dv/dt = (d/dt)(dx/dt) = (d2x/dt2), where v is the velocity.

Equation (1.8) contains the second derivative of the coordinate x with respect to time.

To solve it, we must carry out two integrations. This introduces two arbitrary constants

c1 and c2 into the solution, and
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where g is some function of time. We now ask: What information must we

possess at a given time t0 to be able to predict the future motion of the

particle? If we know that at t0 the particle is at point x0, we have:

Since we have two constants to determine, more information is needed.

Differentiating (1.9), we have
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If we also know that at time t0 the particle has velocity v0, then we have the

additional relation

We may then use (1.10) and (1.11) to solve for c1 and c2 in terms of x0 and v0.

Knowing c1 and c2, we can use Eq. (1.9) to predict the exact future motion of

the particle.
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As an example of Eqs. (1.8) to (1.11), consider the vertical motion of a

particle in the earth’s gravitational field. Let the x axis point upward. The

force on the particle is downward and is F = -mg, where g is the gravitational

acceleration constant. Newton’s second law (1.8) is:

-mg = md2x/dt2, so d2x/dt2 = -g

A single integration gives dx/dt = -gt + c1. The arbitrary constant c1 can be

found if we know that at time t0 the particle had velocity v0. Since v=dx/dt, we

have v0 = -gt0 + c1 and c1 = v0 + gt0.
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Therefore, dx/dt = -gt + gt0 + v0. Integrating a second time, we introduce

another arbitrary constant c2, which can be evaluated if we know that at time

t0 the particle had position x0.

x = x0 – 1/2 g (t - t0)
2 + v0 (t - t0)

Knowing x0 and v0 at time t0, we can predict the future position of the particle.
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The classical-mechanical potential energy V of a particle moving in one

dimension is defined to satisfy:

For example, for a particle moving in the earth’s gravitational field, ƏV/Əx =

-F = mg and integration gives V = mgx + c, where c is an arbitrary constant.

We are free to set the zero level of potential energy wherever we please.

Choosing c = 0, we have V = mgx as the potential-energy function.
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To describe the state of a system in quantum mechanics, we postulate the

existence of a function Ψ of the particles’ coordinates called the state function

or wave function (often written as wavefunction). Since the state will, in

general, change with time, Ψ is also a function of time. For a one-particle,

one-dimensional system, we have:

Ψ= Ψ (x, t)
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For a one-particle, one-dimensional system, this equation is postulated to be:
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The concept of the wave function and the equation governing its change with

time were discovered in 1926 by the Austrian physicist Erwin Schrödinger

(1887–1961). In this equation, known as the time-dependent Schrödinger

equation (or the Schrödinger wave equation):
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We begin by restricting ourselves to the special case where the potential

energy V is not a function of time but depends only on x. This will be true if

the system experiences no time-dependent external forces. The time-

dependent Schrödinger equation reads:
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We now restrict ourselves to looking for those solutions of (1.16) that can be

written as the product of a function of time and a function of x:

Capital psi is used for the time-dependent wave function and lowercase psi for

the factor that depends only on the coordinate x.
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Taking partial derivatives of (1.17), we have:

Substitution into (1.16) gives:
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Equating the left side of (1.18) to E, we get:

Integrating both sides of this equation with respect to t, we have:

where C is an arbitrary constant of integration. Hence:
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where the arbitrary constant A has replaced eC. Since A can be included as a factor

in the function ψ(x) that multiplies f(t) in (1.17), A can be omitted from f(t). Thus:

Equating the right side of (1.18) to E, we have:

Equation (1.19) is the time-independent Schrödinger equation for a single particle

of mass m moving in one dimension.
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What is the significance of the constant E? Since E occurs as [E – V(x)] in

(1.19), E has the same dimensions as V, so E has the dimensions of energy. In

fact, we postulate that E is the energy of the system. Thus, for cases where the

potential energy is a function of x only, there exist wave functions of the form:

and these wave functions correspond to states of constant energy E.
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Operators:

The entity in brackets in (3.1) is an operator. Equation (3.1) suggests that we

have an energy operator, which, operating on the wave function, gives us the

wave function back again, but multiplied by an allowed value of the energy.
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If 3^ is the operator that multiplies a function by 3, then:

A^ transforms the function f(x) into the function g(x), we write A^ f(x) = g(x).

We define the sum and the difference of two operators A^ and B^ by
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The product of two operators A^ and B^ is defined by:

In other words, we first operate on f(x) with the operator on the right of the

operator product, and then we take the resulting function and operate on it

with the operator on the left of the operator product.

140

Dept of Applied Chemistry - UMZ



141

Dept of Applied Chemistry - UMZ



142

Dept of Applied Chemistry - UMZ



143

Dept of Applied Chemistry - UMZ



144

Dept of Applied Chemistry - UMZ



145

Dept of Applied Chemistry - UMZ



146

Dept of Applied Chemistry - UMZ



147

Dept of Applied Chemistry - UMZ



148

Dept of Applied Chemistry - UMZ



149

Dept of Applied Chemistry - UMZ



150

Dept of Applied Chemistry - UMZ



151

Dept of Applied Chemistry - UMZ



152

Dept of Applied Chemistry - UMZ



153

Dept of Applied Chemistry - UMZ



154

Dept of Applied Chemistry - UMZ



155

Dept of Applied Chemistry - UMZ



156

Dept of Applied Chemistry - UMZ



157

Dept of Applied Chemistry - UMZ



158

Dept of Applied Chemistry - UMZ



159

Dept of Applied Chemistry - UMZ



160

Dept of Applied Chemistry - UMZ



The Three-Dimensional, Many-Particle Schrödinger Equation:

Up to now we have restricted ourselves to one-dimensional, one-particle

systems. The operator formalism developed in the last section allows us to

extend our work to three dimensional, many-particle systems. The time-

dependent Schrödinger equation for the time development of the state

function is postulated to have the form of Eq. (1.13):
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The time-independent Schrödinger equation for the energy eigenfunctions and

eigenvalues is:

which is obtained from (3.42) by taking the potential energy as independent of

time and applying the separation-of-variables procedure used to obtain (1.19)

from (1.13).
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For a one-particle, three-dimensional system, the classical-mechanical

Hamiltonian is:

Introducing the quantum-mechanical operators [Eq. (3.24)], we have for the

Hamiltonian operator:
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The one-particle, three-dimensional, time-independent Schrödinger equation

is then:

164

Dept of Applied Chemistry - UMZ



Now consider a three-dimensional system with n particles. Let particle i have

mass mi and coordinates (xi, yi, zi), where i = 1, 2, 3, …, n. The kinetic energy

is the sum of the kinetic energies of the individual particles:
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where pxi is the x component of the linear momentum of particle i, and so on.

The kinetic energy operator is:
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We shall usually restrict ourselves to cases where the potential energy depends

only on the 3n coordinates:

The Hamiltonian operator for an n-particle, three-dimensional system is then
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and the time-independent Schrödinger equation is:

where the time-independent wave function is a function of the 3n coordinates

of the n particles:

The Schrödinger equation (3.51) is a linear partial differential equation.
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The Hartree–Fock Self-Consistent-Field Method:

For the hydrogen atom, the exact wave function is known. For helium and

lithium, very accurate wave functions have been calculated by including inter

electronic distances in the variation functions. For atoms of higher atomic

number, one way to find an accurate wave function is to first find an

approximate wave function using the Hartree–Fock procedure, which we shall

outline in this section. The Hartree–Fock method is the basis for the use of

atomic and molecular orbitals in many-electron systems.
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The Hamiltonian operator for an n-electron atom is:

where an infinitely heavy point nucleus was assumed. The first sum in (11.1)

contains the kinetic-energy operators for the n electrons. The second sum is

the potential energy for the attractions between the electrons and the nucleus

of charge Ze.
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For a neutral atom, Z = n. The last sum is the potential energy of the inter

electronic repulsions. The restriction j > i avoids counting each inter

electronic repulsion twice and avoids terms like e2/4πɛ0rii. The Hamiltonian

(11.1) is incomplete, because it omits spin–orbit and other interactions. The

omitted terms are small (except for atoms with high Z).
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