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Molecular Orbital Theory:
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Formation of Sigma Molecular Orbitals:

1. Overlapping of two 1s atomic orbital
Example: H,

) O o

Q Q antibonding

2. Overlapping of two px atomic orbital

> O . 0C_ D0 bonding
— OOOO antibonding




3. Overlapping of an s and px atomic orbitals

C<D () — < O b
@O antibonding

4. Overlapping of px and dz? or dx2-y2

C>Q Cb@ - .x<> bonding
C>Q % o +.© antibonding
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Computational chemistry:
Computational chemistry uses result of theoretical chemistry incorporated into
efficient computer programmed to calculate structure and properties of

molecule.

It calculate the properties of molecule such as structure, relative energy,

charge distribution, dipole moment, vibrational frequency, reactivity and other

spectroscopic quantity.




» Classical Methods:
1. Molecular Mechanics.

2. Molecular Dynamics.

« Quantum Mechanics Methods:
1. Semi empirical Methods.

2. Ab 1nitio Methods.

3. Density functional Theory.




The Time-Dependent Schrodinger Equation:

Classical mechanics applies only to macroscopic particles. For microscopic

“particles” we require a new form of mechanics, called quantum mechanics.

We now consider some of the contrasts between classical and quantum
mechanics. For simplicity a one-particle, one-dimensional system will be

discussed.




In classical mechanics the motion of a particle is governed by Newton’s

second law:

ﬂlI
F=ma= mdr—f (1.8)

where F is the force acting on the particle, m is its mass, and t is the time; a is the
acceleration, given by a = dv/dt = (d/dt)(dx/dt) = (d?x/dt?), where v is the velocity.
Equation (1.8) contains the second derivative of the coordinate x with respect to time.
To solve it, we must carry out two integrations. This introduces two arbitrary constants

c, and c, into the solution, and

x = g(t.ep.e1)




where g is some function of time. We now ask: What information must we
possess at a given time t, to be able to predict the future motion of the

particle? If we know that at t, the particle is at point x,,, we have:

xo = g(fy. 1. €2) (1.10)

Since we have two constants to determine, more information is needed.

Differentiating (1.9), we have

dx d
= v =2 g(te, 1)




If we also know that at time ¢, the particle has velocity v,, then we have the

additional relation

d
= — f’ . ]“.
Up dr‘g[ €1, €1) — (1.11)

We may then use (1.10) and (1.11) to solve for ¢, and ¢, in terms of x,, and v,,.

Knowing c, and c,, we can use Eq. (1.9) to predict the exact future motion of

the particle.




As an example of Egs. (1.8) to (1.11), consider the vertical motion of a
particle in the earth’s gravitational field. Let the x axis point upward. The
force on the particle 1s downward and 1s F = -mg, where g 1s the gravitational

acceleration constant. Newton’s second law (1.8) 1s:

-mg = md?x/dt?, so d*x/dt?> = -g

A single integration gives dx/dt = -gt + ¢,. The arbitrary constant c, can be
found if we know that at time t, the particle had velocity v,. Since v=dx/dt, we




Therefore, dx/dt = -gt + gt, + v,. Integrating a second time, we introduce
another arbitrary constant c,, which can be evaluated 1f we know that at time

t, the particle had position x,,.

X=X,— 1/2 g (t-t)*+vy(t-ty)

Knowing x, and v,, at time t,, we can predict the future position of the particle.




The classical-mechanical potential energy V of a particle moving in one

dimension 1s defined to satisfy:

dVix, 1)
dx

= —F(x,1)

For example, for a particle moving in the earth’s gravitational field, OV/Ox =
-F = mg and integration gives V = mgx + ¢, where c is an arbitrary constant.
We are free to set the zero level of potential energy wherever we please.

Choosing ¢ =0, we have V = mgx as the potential-energy function.




To describe the state of a system in quantum mechanics, we postulate the
existence of a function W of the particles’ coordinates called the state function
or wave function (often written as wavefunction). Since the state will, in

general, change with time, ¥ 1s also a function of time. For a one-particle,

one-dimensional system, we have:




For a one-particle, one-dimensional system, this equation is postulated to be:

ChaV(x ) 8 PV (xr)
i o 2m axd

+ Vix, 0)¥(x, 1)

where the constant #i (h-bar) is defined as

e
2w

hi =




The concept of the wave function and the equation governing its change with
time were discovered in 1926 by the Austrian physicist Erwin Schrodinger
(1887—1961). In this equation, known as the time-dependent Schrodinger

equation (or the Schrodinger wave equation):

i = V—1, m is the mass of the particle, and

V(x,t) is the potential-energy function of the system.




We begin by restricting ourselves to the special case where the potential
energy V is not a function of time but depends only on x. This will be true if
the system experiences no time-dependent external forces. The time-

dependent Schrodinger equation reads:

V() 8PP (x1)
i o 2m A

+ V(x)¥(x, 1)




We now restrict ourselves to looking for those solutions of (1.16) that can be

written as the product of a function of time and a function of x:

W(x, 1) = f(t)i(x) (1.17)

Capital psi is used for the time-dependent wave function and lowercase psi for

the factor that depends only on the coordinate x.




Taking partial derivatives of (1.17), we have:

oW (x,1) _ df(r) W (x,1)
ar dt b(x). ax° =1

Substitution into (1.16) gives:

h df(r) d*(x)

2
_TT@;(I] = —:—mﬂf} 102 + Vi{x)f () (x)

_h 1 df(r) _
if(t) de




Equating the left side of (1.18) to E, we get:

o) _ e,

fz) h
Integrating both sides of this equation with respect to t, we have:

Inf(t) = —iEt/h + C

where C is an arbitrary constant of integration. Hence:

(1) = oComibtfh = A —iEtfh




where the arbitrary constant A has replaced e‘. Since A can be included as a factor

in the function y(x) that multiplies f(t) in (1.17), A can be omitted from f(t). Thus:

(1) = o—iEifh

Equating the right side of (1.18) to E, we have:

i di(x) )
I V() = Eb(x)

Equation (1.19) is the time-independent Schrodinger equation for a single particle

of mass m moving in one dimension.




What 1s the significance of the constant E? Since E occurs as [E — V(x)] in
(1.19), E has the same dimensions as V, so E has the dimensions of energy. In
fact, we postulate that E 1s the energy of the system. Thus, for cases where the

potential energy 1s a function of x only, there exist wave functions of the form:

W(x,t) = e x) (1.20)

and these wave functions correspond to states of constant energy E.




Operators:

s
|22 L4 v Jot) = Bt

The entity 1n brackets in (3.1) 1s an operator. Equation (3.1) suggests that we
have an energy operator, which, operating on the wave function, gives us the

wave function back again, but multiplied by an allowed value of the energy.




If 3" is the operator that multiplies a function by 3, then:

3(x? + 3e*) = 3x? + 9¢°

A" transforms the function f(x) into the function g(x), we write A" f(x) = g(x).

We define the sum and the difference of two operators A" and B” by

(A + B)f(x) = Af(x) + Bf(x)

(A = B)f(x) = Af(x) — Bf(x)




The product of two operators A" and B” is defined by:

ABf(x) = A[Bf(x)]

In other words, we first operate on f(x) with the operator on the right of the
operator product, and then we take the resulting function and operate on it

with the operator on the left of the operator product.




Ovperators obey the associative law of multiplication:
A(BC) = (AB)C (3.6)
The proof of (3.6) is outlined in Prob. 3.10. As an example, let A =d/dx, B =%, and
C = 3. Using (3.5), we have
(ABy =D =1+ iD, [(AB)C]f= (1 + iD)3f = 3f + 3xf’
(BC) = 3i. [A(BC)]f = D(3xf) = 3f + 3xf"




A major difference between operator algebra and ordinary algebra is that numbers
obey the commutative law of mulliplitatinn but operators do not necessarily do so;
ab = ba if a and b are numbers, but AB and BA are not necessarily equal operators. We
define the commutator [A, B] of the operators A and B as the operator AB — BA:

[AB] _a o an




If AB = ﬁ'ﬁ then [ﬁ E‘-] = (), and we say [hat;i and ;.&. commute. If AB # ,&3 then
A and B do not commute. Note that [A, B]f = ABf — BAf. Since the order in which we
apply the operators 3 and d/dx makes no difference, we have
[3 dl_3d _d5_,
" dx dx  dx

From Eq. (3.5) we have

d . - s
[—,x] =Dx—axD=1

dx
The operators d/dx and ¥ do not commute.




The square of an operator is defined as the product of the operator with itself:
B = BB. Let us find the square of the differentiation operator:

Df(x) = D(Df) = Df' = f"
D= dlf‘drz

As another example, the square of the operator that takes the complex conjugate of a func-
tion is equal to the unit operator, since taking the complex conjugate twice gives the origi-
nal function. The operator B (n=1,2,3,...) is defined to mean applying the operator
B n times in succession.




It turns out that the operators occurring in quantum mechanics are linear. A is a
linear operator if and only if it has the following two properties:

A[f(x) + g(x)] = Af(x) + Ag(x) (3.9)

Alef(x)] = cAf(x) | (3.10)

where fand ¢ are arbitrary functions and ¢ is an arbitrary constant (not necessarily real).
Examples of linear operators include t°, d/dx, and d*/dx*. Some nonlinear operators are
cosand ()% where ( )* squares the function it acts on.




Useful identities in linear-operator manipulations are

(A+ B)C = AC + BC




Eigenfunctions and Eigenvalues

Suppose that the effect of operating on some function f(x) with the linear operator Ais
simply to multiply f(x) by a certain constant k. We then say that f{x) is an eigenfunction
of A with eigenvalue k. (Eigen is a German word meaning characteristic.) As part of the
definition, we shall require that the eigenfunction f(x) is not identically zero. By this

we mean that, although f{x) may vanish at various points, it is not everywhere zero.
We have

Af(x) = k(x) (3.14)




As an example of (3.14), e™ is an eigenfunction of the operator d/dx with eigenvalue 2:

(dfdx)e™ = 2™

However, sin 2x is not an eigenfunction of d/dx, since (d/dx)(sin 2x) = 2 cos 2x, which
is not a constant times sin 2x.




Sir William Rowan Hamilton (1805-1865) devised an alternative form of Newton’s
equations of motion involving a function H, the Hamiltonian function for the system.
For a system where the potential energy is a function of the coordinates only, the total
energy remains constant with time; that is, E 1s conserved. We shall restrict ourselves
to such conservative systems. For conservative systems, the classical-mechanical
Hamiltonian function turns out to be simply the total energy expressed in terms of
coordinates and conjugate momenta. For Cartesian coordinates x, v, z, the conjugate

momenta are the components of linear momentum in the x, v, and z directions: p_, p,.
and p_:

p: = mu,, p,=my,, p.=mu. (3.19)

where v,, v,, and v_ are the components of the particle’s velocity in the x, y, and z
directions.




Let us find the classical-mechanical Hamiltonian function for a particle of mass m mov-
ing in one dimension and subject to a potential energy V(x). The Hamiltonian function is
equal to the energy, which is composed of kinetic and potential energies. The familiar form
of the kinetic energy, %mvf, will not do, however, since we must express the Hamiltonian
as a function of coordinates and momenta, not velocities. Since v, = p,/m, the form of the
kinetic energy we want is p2/2m. The Hamiltonian function is

pi

H =2+ V(x) (3.20)

The time-independent Schrodinger equation (3.1) indicates that, corresponding to the
Hamiltonian function (3.20), we have a quantum-mechanical operator
52
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Each Cartesian component of linear momentum p,, is replaced by the operator

-

d
= e m— = —fﬁ —
Ps = G ag ag
where i = V—1 and d/dq is the operator for the partial derivative with respect to the
coordinate ¢. Note that 1/i = i/i* = i/(—1) = —i.
Consider some examples. The operator corresponding to the x coordinate is multipli-
cation by x:

l I=xX (3.21)

Also,




The operators for the components of linear momentum are

Px = I_E‘ Py = 1_5 P:

‘ ha .

- R

The operator corresponding to p7 is
= _ (Ei)z mEIRD
Pz idx idxi

with similar expressions for p> and p2.




What are the potential-energy and kinetic-energy operators in one dimension?
Suppose a system has the potential-energy function V(x) = ax”, where a is a constant.
Replacing x with x X, we see that the potential-energy operator i1s simply multipli-
cation by ax’; that is, V(x) = ax® X. In general, we have for any potential-energy

function

V(x) = V(x) X

The classical-mechanical expression for the kinetic energy Tin (3.20) is

T = p;/2m

(3.25)




Replacing p, by the corresponding operator (3.23), we have

L (3.27)
mac  2mdy '
where (3.24) has been used, and the partial derivative becomes an ordinary derivative in

one dimension. The classical-mechanical Hamiltonian (3.20) is

H=T+V=p/2m+ V(x) (3.28)




The corresponding quantum-mechanical Hamiltonian (or energy) operator is

A wod
H—T+V——EE+V(J:] (3.29)

which agrees with the operator in the Schridinger equation (3.1). Note that all these

operators are linear.




How are the quantum-mechanical operators related to the corresponding proper-
ties of a system? Each such operator has its own set of eigenfunctions and eigenvalues.
Let B be the quantum-mechanical operator that corresponds to the physical prop-
erty B. Letting f; and b; symbolize the eigenfunctions and eigenvalues of B, we have

[Eq. (.14)

Bf:=bf, i=123... (330




The operator B has many eigenfunctions and eigenvalues, and the subscript i is used to
indicate this. B is usually a differential operator, and (3.30) is a differential equation whose
solutions give the eigenfunctions and eigenvalues. Quantum mechanics postulates that (no
matter what the state function of the system happens to be) a measurement of the property
B must vield one of the eigenvalues b; of the operator B. For example, the only values that
can be found for the energy of a system are the eigenvalues of the energy (Hamiltonian)
operator H. Using i, to symbolize the eigenfunctions of H. we have as the eigenvalue
equation (3.30)

HY; = Ea; (3.31)




Using the Hamiltonian (3.29) in (3.31), we obtain for a one-dimensional, one-particle system

[—;;i + V[x]]lﬁr, = Eal, (3.32)

which is the time-independent Schridinger equation (3.1). Thus our postulates about
operators are consistent with our previous work.




In Chapter 1 we postulated that the state of a quantum-mechanical system is speci-
fied by a state function W(x, t), which contains all the information we can know about
the system. How does W give us information about the property B? We postulate that if W
is an eigenfunction of B with eigenvalue by, then a measurement of B is certain to vield
the value by. Consider, for example, the energy. The eigenfunctions of the energy operator
are the solutions ¢r(x) of the time-independent Schridinger equation (3.32). Suppose the

system is in a stationary state with state function [Eq. (1.20)]

V(x,t) = e My (x) (3.33)




Is W (x, 1) an eigenfunction of the energy operator H? We have
HY (x,1) = He By (x)

H contains no derivatives with respect to time and therefore does not affect the exponential
factor ¢ "E/%, We have

HY (x,1) = e B0y (x) = Ee 7By (x) = E¥(x, 1)
HV = EV (3.34)

where (3.31) was used. Hence, for a stationary state, W (x, ) is an eigenfunction of H, and
we are certain to obtain the value E when we measure the energy.




The Three-Dimensional, Many-Particle Schrodinger Equation:

Up to now we have restricted ourselves to one-dimensional, one-particle

systems. The operator formalism developed in the last section allows us to
extend our work to three dimensional, many-particle systems. The time-
dependent Schrodinger equation for the time development of the state

function 1s postulated to have the form of Eq. (1.13):




The time-independent Schrodinger equation for the energy eigenfunctions and

eigenvalues i1s:

which 1s obtained from (3.42) by taking the potential energy as independent of

time and applying the separation-of-variables procedure used to obtain (1.19)

from (1.13).




For a one-particle, three-dimensional system, the classical-mechanical

Hamiltonian is:

1
H=T+ V=E{pi+p§+p§}+v{x,y,z] (3.44)

Introducing the quantum-mechanical operators [Eq. (3.24)], we have for the

Hamiltonian operator:

_ (&1)2 _
i dx idxiodx




The operator in parentheses in (3.45) is called the Laplacian operator V’ (read as
*“del squared™):

Vi=—

+ (3.46)

_|,_
aII ayl EEI

The one-particle, three-dimensional, time-independent Schrodinger equation

1s then:

2

o _
VY + Vg = Ep




Now consider a three-dimensional system with n particles. Let particle 1 have

mass m; and coordinates (x, y,, z.), where 1= 1, 2, 3, ..., n. The kinetic energy

1s the sum of the kinetic energies of the individual particles:

1
S (P, Py, P2




where p,; 1s the x component of the linear momentum of particle 1, and so on.

The kinetic energy operator is:

e
2m, kaxz

e




We shall usually restrict ourselves to cases where the potential energy depends

only on the 3n coordinates:

V= V(X ¥ 210 -« + s Xs Vs Tn)

The Hamiltonian operator for an n-particle, three-dimensional system 1s then

Vi W o)

ﬁ_
2m;




and the time-independent Schrodinger equation is:

n ﬁ?
=25 —Vi + V(x.... ,anl]u!r = Ey (3.51)

=1 I

where the time-independent wave function is a function of the 3n coordinates

of the n particles:

U = (X, Y1 Z0s - - v s X Vs 2t ) (3.52)

The Schrodinger equation (3.51) is a linear partial differential equation.




The Hartree—Fock Self-Consistent-Field Method:

For the hydrogen atom, the exact wave function is known. For helium and

lithium, very accurate wave functions have been calculated by including inter

electronic distances in the variation functions. For atoms of higher atomic
number, one way to find an accurate wave function is to first find an
approximate wave function using the Hartree—Fock procedure, which we shall
outline in this section. The Hartree—Fock method is the basis for the use of

atomic and molecular orbitals in many-electron systems.




The Hamiltonian operator for an n-electron atom is:

2 m n
f}=—; Svi-N z_, D < (11.1)

ei=1 =1 Amegr; (S S Amegry

where an infinitely heavy point nucleus was assumed. The first sum in (11.1)
contains the kinetic-energy operators for the n electrons. The second sum is
the potential energy for the attractions between the electrons and the nucleus

of charge Ze.




For a neutral atom, Z = n. The last sum 1s the potential energy of the inter

electronic repulsions. The restriction j > 1 avoids counting each inter

electronic repulsion twice and avoids terms like e?/4me,r;. The Hamiltonian

(11.1) 1s incomplete, because it omits spin—orbit and other interactions. The

omitted terms are small (except for atoms with high Z).




