
Perturbation Treatment of the Helium-Atom Ground state:

The helium atom has two electrons and a nucleus of charge +2e. We shall

consider the nucleus to be at rest and place the origin of the coordinate system

at the nucleus. The coordinates of electrons 1 and 2 are (x1, y1, z1) and (x2, y2,

z2); see Fig. 9.1.
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where me is the mass of the electron, r1 and r2 are the distances of electrons 1 and 2

from the nucleus, and r12 is the distance from electron 1 to 2. The first two terms are

the operators for the electrons’ kinetic energy. The third and fourth terms are the

potential energies of attraction between the electrons and the nucleus. The final term is

the potential energy of inter electronic repulsion. Note that the potential energy of a

system of interacting particles cannot be written as the sum of potential energies of the

individual particles. The potential energy is a property of the system as a whole.
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Classical mechanics of One-particle angular momentum:

Consider a moving particle of mass m. We set up a Cartesian coordinate

system that is fixed in space. Let r be the vector from the origin to the

instantaneous position of the particle. We have:

where x, y, and z are the particle’s coordinates at a given instant.
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Defining the velocity vector v as the time derivative of the position vector, we

have:
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One-particle Orbital-angular-momentum Operators:

Now let us turn to the quantum-mechanical treatment. In quantum mechanics,

there are two kinds of angular momenta. Orbital angular momentum results

from the motion of a particle through space, and is the analog of the classical-

mechanical quantity L. Spin angular momentum is an intrinsic property of

many microscopic particles and has no classical-mechanical analog. We are

now considering only orbital angular momentum.
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We get the quantum-mechanical operators for the components of orbital

angular momentum of a particle by replacing the coordinates and momenta in

the classical equations (5.39) by their corresponding operators. We find:
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At last, we are ready to express the angular-momentum components in

spherical coordinates. Substituting (5.51), (5.63), and (5.64) into (5.40), we

have:
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We already have the forms of the operators ∂/∂x, ∂/∂y, and ∂/∂z in these

coordinates [Eqs. (5.62)–(5.64)], and by squaring each of these operators and

then adding their squares, we get the Laplacian. This calculation is left as an

exercise. The result is:
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Looking back to (5.68), which gives the operator L^2 for the square of the

magnitude of the orbital angular momentum of a single particle, we see that:

The Hamiltonian (6.5) becomes:
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Noninteracting Particles and Separation of Variables:

Up to this point, we have solved only one-particle quantum-mechanical

problems. The hydrogen atom is a two-particle system, and as a preliminary to

dealing with the H atom, we first consider a simpler case, that of two

noninteracting particles.
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Suppose that a system is composed of the noninteracting particles 1 and 2. Let

q1 and q2 symbolize the coordinates (x1, y1, z1) and (x2, y2, z2) of particles 1

and 2. Because the particles exert no forces on each other, the classical-

mechanical energy of the system is the sum of the energies of the two

particles: E = E1 + E2 = T1 + V1 + T2 + V2, and the classical Hamiltonian is the

sum of Hamiltonians for each particle: H = H1 + H2. Therefore, the

Hamiltonian operator is:
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The Hartree SCF Method: Because of the inter electronic repulsion terms

e2>4πɛ0rii, the Schrödinger equation for an atom is not separable. Recalling

the perturbation treatment of helium, we can obtain a zeroth-order wave

function by neglecting these repulsions. The Schrödinger equation would then

separate into n one-electron hydrogen like equations. The zeroth-order wave

function would be a product of n hydrogen like (one-electron) orbitals:
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The Born–Oppenheimer Approximation:

If we assume the nuclei and electrons to be point masses and neglect spin–

orbit and other relativistic interactions (Sections 11.6 and 11.7), then the

molecular Hamiltonian operator is:
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where α and β refer to nuclei and i and j refer to electrons. The first term in

(13.1) is the operator for the kinetic energy of the nuclei. The second term is

the operator for the kinetic energy of the electrons. The third term is the

potential energy of the repulsions between the nuclei, rαβ being the distance

between nuclei α and β with atomic numbers Zα and Zβ. The fourth term is the

potential energy of the attractions between the electrons and the nuclei, ria

being the distance between electron i and nucleus α. The last term is the

potential energy of the repulsions between the electrons, rij being the distance

between electrons i and j. The zero level of potential energy for (13.1)

corresponds to having all the charges (electrons and nuclei) infinitely far from

one another.
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As an example, consider H2. Let α and β be the two protons, 1 and 2 be the

two electrons, and mp be the proton mass. The H2 molecular Hamiltonian

operator is:
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The wave functions and energies of a molecule are found from the

Schrödinger equation:

where qi and qα symbolize the electronic and nuclear coordinates,

respectively.
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The molecular Hamiltonian (13.1) is formidable enough to terrify any

quantum chemist. Fortunately, a very accurate, simplifying approximation

exists. Since nuclei are much heavier than electrons (mα >> me), the electrons

move much faster than the nuclei. Hence, to a good approximation as far as

the electrons are concerned, we can regard the nuclei as fixed while the

electrons carry out their motions. Speaking classically, during the time of a

cycle of electronic motion, the change in nuclear configuration is negligible.

Thus, considering the nuclei as fixed, we omit the nuclear kinetic-energy

terms from (13.1) to obtain the Schrödinger equation for electronic motion:

225

Dept of Applied Chemistry - UMZ



226

Dept of Applied Chemistry - UMZ



The energy U in (13.4) is the electronic energy including internuclear

repulsion. The internuclear distances rαβ in (13.4) are not variables, but are

each fixed at some constant value. Of course, there are an infinite number of

possible nuclear configurations, and for each of these we may solve the

electronic Schrödinger equation (13.4) to get a set of electronic wave

functions and corresponding electronic energies. Each member of the set

corresponds to a different molecular electronic state. The electronic wave

functions and energies thus depend parametrically on the nuclear coordinates:

where n symbolizes the electronic quantum numbers.
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The variables in the electronic Schrödinger equation (13.4) are the electronic

coordinates. The quantity VNN is independent of these coordinates and is a

constant for a given nuclear configuration. Now it is easily proved that the

omission of a constant term C from the Hamiltonian does not affect the wave

functions and simply decreases each energy eigenvalue by C. Hence, if VNN is

omitted from (13.4), we get:
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where the purely electronic energy Eel(qα) (which depends parametrically on

the nuclear coordinates qα) is related to the electronic energy including

internuclear repulsion by:
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We can therefore omit the internuclear repulsion from the electronic

Schrödinger equation. After finding Eel for a particular configuration of the

nuclei by solving (13.7), we calculate U using (13.8), where the constant

VNN is easily calculated from (13.6) using the assumed nuclear locations.
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Hence the Schrödinger equation for nuclear motion is:

231

Dept of Applied Chemistry - UMZ



The variables in the nuclear Schrödinger equation are the nuclear coordinates,

symbolized by qα. The energy eigenvalue E in (13.10) is the total energy of

the molecule, since the Hamiltonian (13.11) includes operators for both

nuclear energy and electronic energy. E is simply a number and does not

depend on any coordinates. Note that for each electronic state of a molecule

we must solve a different nuclear Schrödinger equation, since U differs from

state to state.
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The total energy E for an electronic state of a diatomic molecule is

approximately the sum of electronic, vibrational, rotational, and translational

energies:

E ≈ Eelec + Evib + Erot + Etr

where the constant Eelec [not to be confused with Eel in (13.7)] is given by Eelec

= U(Re).
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The approximation of separating electronic and nuclear motions is called the

Born–Oppenheimer approximation and is basic to quantum chemistry. Born

and Oppenheimer’s mathematical treatment indicated that the true molecular

wave function is adequately approximated as:
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The Born–Oppenheimer approximation introduces little error for the ground

electronic states of diatomic molecules. Corrections for excited electronic

states are larger than for the ground state, but still are usually small as

compared with the errors introduced by the approximations used to solve the

electronic Schrödinger equation of a many-electron molecule. Hence we shall

not worry about corrections to the Born–Oppenheimer approximation.
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Computational Models

 A model is a system of equations, or computations used to
determine the energetics of a molecule

 Different models use different approximations (or levels of
theory) to produce results of varying levels of accuracy.

 There is a trade off between accuracy and computational time.

 There are two main types of models; those that use
Schrödinger's equation (or simplifications of it) and those that
do not.
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 Types of Models
(Listed in order from most to least accurate)

 Ab initio
• uses Schrödinger's equation, but 

with approximations

 Semi Empirical
• uses experimental parameters and 

extensive simplifications of 
Schrödinger's equation

 Molecular Mechanics
• does not use Schrödinger's 

equation
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Ab Initio:
 Ab initio translated from Latin means “from first
principles.” This refers to the fact that no experimental
data is used and computations are based on quantum
mechanics.

 Different Levels of Ab Initio Calculations
 Hartree-Fock (HF)

• The simplest ab initio calculation

• The major disadvantage of HF calculations is that electron
correlation is not taken into consideration.

 The Møller-Plesset Perturbation Theory (MP)

 Density Functional Theory (DFT)

 Configuration Interaction (CI) Take into consideration 
electron correlation



Hartree Fock Theory
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 Using MO theory, define simplified wave functions (Hartree-Fock wave

functions) which can be further broken down into a linear combination of

one-electron atomic orbitals (LCAO-MO).

 Choice of atomic orbitals is important since they define the basis set

(gaussian type orbitals)

 Take a linear combination of gaussian orbitals to define electron conditions.

(Noble Prize to John Pople 1998)

 Use Self Consistent Field Method to calculate total electronic Energy



Limitations of Hartree Fock:
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 Use of simplified wave function

 Single assignment of electrons to orbitals

 Need to expand on the configuration interaction of electrons 

 Other ab initio methods

 Moller-Plesset Perturbation Theory 

 Typically terminated at the second order 

 MP2, MP4



Semi-Empirical Methods:

241

Dept of Applied Chemistry - UMZ

 Use simplifying assumptions to solve the energy and wave

function of molecular systems.

 Use simpler Hamiltonian operator

 Use empirical parameters for some of the two-electron

integrals

 Complete or partial neglect of other electron integrals



Semi-Empirical Methods:
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 CNDO – Complete Neglect of Differential Overlap

 Bonding not calculated

 MINDO – Modified Intermediate Neglect of Differential Overlap

 MNDO – Modified Neglect of Differential Overlap

 Allow for faster calculations

 Allow for bigger chemical systems

 Obvious problems with accuracy
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Semi-Empirical Methods

 Advantage

 Faster than ab initio

 Less sensitive to parameterization than MM 
methods

 Disadvantage

 Accuracy depends upon parameterization
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Semi-Empirical Methods

 Ignore Core Electrons

 Approximate part of HF integration
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Semi-Empirical Methods

 AM1
 Modified nuclear repulsion terms model to account for

H-bonding (1985, Dewar et al)

 Widely used today (transition metals, inorganics)

 PM3 (1989, Stewart)
 Larger data set for parameterization compared to AM1

 Widely used today (transition metals, inorganics)
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General Reccommendations

 More accurate than empirical methods

 Less accurate than ab initio methods

 Inorganics and transition metals

 Pretty good geometry OR energies

 Poor results for systems with diffusive
interactions (van der Waals, H-bonded,
radicals etc.)



Density Functional Theory
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 Replace complicated multi-electron wave function and the
Schrodinger equation with simpler equation for calculation of
electron density of the molecular system.

 Local density approximation where electronic properties are
determined as functions of the electron density through the
use of local relationships.

 Nobel Prize to Walter Kohn in 1998
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 One to one correspondence between ground state wave

function and ground state electron density

 Simpler to calculate G. S. electronic wave function from G.

S. electronic density

 Faster and greater Accuracy than conventional ab initio

 Problematic with excited state systems

 Newest method – not standardized



Molecular Mechanics:

• Molecular mechanics programs use equations based on classical physics to

calculate force fields.

• Atoms treated as spheres, bonds as springs and electron are ignored.

• It assume that the total potential energy (Etotal) of molecule is given by sum

of all the energies of attractive and repulsive forces between atom in structure.

249

Dept of Applied Chemistry - UMZ



The molecular mechanics equation:

E = EB+EA+ED+ENB

EB = The energy involved in the

deformation bond either by stretching or

compression.

EA = The energy involved in the angle

bending .

ED = The torsional angle energy.

ENB = The energy involved in the

interaction between atoms that are not

directly bonded.
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Force Field:

Force field refers to calculation of the interaction and energies between

different atoms between bond stretching, angle bending, torsional angle

and nonbonded interaction.

Force field ignores the electronic distribution while Quantum mechanics

considers electronic distribution of molecule.
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Molecular Mechanics
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Based on Born-Oppenheimer Approximation

Electrons move in stationary field of the nuclei; 

electronic and nuclear motion are separable

 Calculating position of nuclei only



Molecular Mechanics
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 Classical mechanics approach

 Develop a set of potential functions called the force field

which contains adjustable parameters that are optimized to

obtain the best match to the experimental properties.

 Mathematical approach in an attempt to reproduce molecular

structures, potential energies and other features



Limitations of Molecular Mechanics
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 Parameters for a particular class of compounds must be in

the program

 Parameters and equations must be accurate

 Extrapolation to “new” molecular structures may be

dangerous

 Does not deal with electrons



Applications of Molecular Modeling

255

Dept of Applied Chemistry - UMZ

 Understanding Mechanisms

 Understanding Conformations

 Understanding Biological Activity

 Understanding Protein Structures



Comparison of the Performance of Molecular Mechanics (MM) and
Quantum Methods (QM):
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