Perturbation Treatment of the Helium-Atom Ground state:

The helium atom has two electrons and a nucleus of charge +2e. We shall

consider the nucleus to be at rest and place the origin of the coordinate system

at the nucleus. The coordinates of electrons 1 and 2 are (X, y;, z;) and (X5, y»,

z,); see Fig. 9.1.

— FIGURE 9.1 Interparticle
(xp.v.z;) distancesin the helium atom.




If we take the nuclear charge to be +Ze instead of +2¢, we can treat heliumlike ions
such as H™, Li*, and Be®". The Hamiltonian operator is
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where m, 1s the mass of the electron, r; and r, are the distances of electrons 1 and 2
from the nucleus, and r;, 1s the distance from electron 1 to 2. The first two terms are
the operators for the electrons’ kinetic energy. The third and fourth terms are the
potential energies of attraction between the electrons and the nucleus. The final term is
the potential energy of inter electronic repulsion. Note that the potential energy of a
system of interacting particles cannot be written as the sum of potential energies of the

individual particles. The potential energy is a property of the system as a whole.
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Substituting (5.57), (5.59), and (5.61) into (5.56), we find
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Angular Momentum of a One-Particle System

we found the eigenfunctions and eigenvalues for the linear-momen-
tum operator p,. In this section we consider the same problem for the angular mo-
mentum of a particle. Angular momentum plays a key role in the quantum mechanics
of atomic structure. We begin by reviewing the classical mechanics of angular
momentum.




Classical mechanics of One-particle angular momentum:

Consider a moving particle of mass m. We set up a Cartesian coordinate
system that 1s fixed in space. Let r be the vector from the origin to the

instantaneous position of the particle. We have:

r =ix + jy + kz (5.33)

where x, y, and z are the particle’s coordinates at a given instant.




Defining the velocity vector v as the time derivative of the position vector, we

have:

We define the particle’s linear momentum vector p by

p = mv

Py = mv,, p, = mv, p.= mu.




The particle’s angular momentum L with respect to the coordinate origin is defined
in classical mechanics as

=rXp (5.37)
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where (5.28) was used. L,, L,, and L. are the components of L along the x, y, and 7 axes.
The angular-momentum vector L is perpendicular to the plane defined by the particle’s
position vector r and its velocity v (Fig. 5.4).

FIGURES5.4 L =r X p.
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The forque 7 acting on a particle is defined as the cross product of r and the force F
acting on the particle: 7 = r X F. One can show that 7 = dL/dt. When no torque acts
on a particle, the rate of change of its angular momentum is zero; that is, its angular mo-
mentum 1s constant (or conserved). For a planet orbiting the sun, the gravitational force is
radially directed. Since the cross product of two parallel vectors is zero, there 1s no torque
on the planet and its angular momentum is conserved.




One-particle Orbital-angular-momentum Operators:

Now let us turn to the quantum-mechanical treatment. In quantum mechanics,
there are two kinds of angular momenta. Orbital angular momentum results
from the motion of a particle through space, and is the analog of the classical-

mechanical quantity L. Spin angular momentum 1is an intrinsic property of

many microscopic particles and has no classical-mechanical analog. We are

now considering only orbital angular momentum.




We get the quantum-mechanical operators for the components of orbital

angular momentum of a particle by replacing the coordinates and momenta in

the classical equations (5.39) by their corresponding operators. We find:

i'i=j-j=k-k =cos0 =1, i‘j=j-k=k-i=cos(m/2) =0 (522
Using (5.22) and the distributive law (5.21), we have

A-B = (Ai+Aj+AKk)- (Bi+ B,j+ Bk)

A-B=AB, +AB,+ AB.







(5.40)
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(Since yp. = p.y, and so on, we do not run into any problems of noncommutativity in
constructing these operators.) Using

P |L=L-L=12+12+ 12 (5.43)

we can construct the operator for the square of the angular-momentum magnitude from

the operators in (5.40)—(5.42).




At last, we are ready to express the angular-momentum components in
spherical coordinates. Substituting (5.51), (5.63), and (5.64) into (5.40), we

have:
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Also, we find
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By squaring each of L.L,and I. and then adding their squares, we can construct

rn—m

= J[.1 + LI + LI [Eqg. (5.43)]. The msult 15 (Prob. 5.17)
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Although the angular-momentum operators depend on all three Cartesian coordi-
nates, x, v, and z, they involve only the two spherical coordinates 8 and ¢.




We already have the forms of the operators 0/0x, 0/0y, and 0/0z in these

coordinates [Eqgs. (5.62)—(5.64)], and by squaring each of these operators and

then adding their squares, we get the Laplacian. This calculation is left as an

exercise. The result 1s:




Looking back to (5.68), which gives the operator L2 for the square of the

magnitude of the orbital angular momentum of a single particle, we see that:
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The Hamiltonian (6.5) becomes:
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The eigenfunctions of 12 are the spherical harmonics Y7'(#. ¢). and since 12 does
not involve r, we can multiply ¥§' by an arbitrary function of r and still have eigenfunc-

tions of 12 and L. Therefore,

b = R(YT(0.9)

(6.16)




The Schridinger equation involves six independent variables, three coordinates for
each electron. In spherical coordinates, i = i(r|, 0y, by, 12, 62, d1).

The operator V1 is given by Eq. (6.6) with ry, 6, ¢, replacing r, 8, ¢. The variable r,
isrp=[(x; — %)%+ (v — ) + (z1 — 22)*]"% and by using the relations between
Cartesian and spherical coordinates, we can express ry, in terms of ry, 8, ¢y, 15, 05, ¢>.

Because of the ¢? /4meyr,, term, the Schrédinger equation for helium cannot be sepa-

rated 1n any coordinate system, and we must use approximation methods. The perturba-
tion method separates the Hamiltonian (9.39) into two parts, H " and H', where H" is the
Hamiltonian of an exactly solvable problem. If we choose
A f’ Ze* h Ze’
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then H® is the sum of two hydrogenlike Hamiltonians, one for each electron:

H° = H? + HY (9.42)

A f Zet . h’ Ze’
H} = ——V7 - , H}=-——V3 - 4
: 2m, ' dwegn : 2m, : dmegry ©-43)
The unperturbed system is a helium atom in which the two electrons exert no forces on
each other. Although such a system does not exist, this does not prevent us from applying
perturbation theory to this system.




Since the unperturbed Hamiltonian (9.42) is the sum of the Hamiltonians for two
independent particles, we can use the separation-of-variables results of Egs. (6.18) to (6.24)
to conclude that the unperturbed wave functions have the form

ﬂf{ﬂ}(rh ﬁl! (af"h ra, ‘92:- 'i'l} — Fl(rh H]: ‘rbl )Fz(rb ﬂlr 'i’l) (9-44}

and the unperturbed energies are
EY) = E| + E (9.45)
HF\ = E\F\,  HSF, = E>F, (9.46)
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Noninteracting Particles and Separation of Variables:

Up to this point, we have solved only one-particle quantum-mechanical

problems. The hydrogen atom is a two-particle system, and as a preliminary to

dealing with the H atom, we first consider a simpler case, that of two

noninteracting particles.




Suppose that a system is composed of the noninteracting particles 1 and 2. Let

q, and g, symbolize the coordinates (x,, y;, z;) and (X,, y,, Z,) of particles 1

and 2. Because the particles exert no forces on each other, the classical-
mechanical energy of the system is the sum of the energies of the two
particles: E=E, +E,=T, + V, + T, + V,, and the classical Hamiltonian is the
sum of Hamiltonians for each particle: H = H;, + H,. Therefore, the

Hamiltonian operator is:




where ﬁ', involves only the coordinates g, and the momentum operators p, that corre-
spond to g,. The Schridinger equation for the system 1s

(H, + Hy)U(q,.9:) = Ed(q,.42) (6.18)




The Hartree SCF Method: Because of the inter electronic repulsion terms
e?>4me r;;, the Schrodinger equation for an atom is not separable. Recalling
the perturbation treatment of helium, we can obtain a zeroth-order wave
function by neglecting these repulsions. The Schrodinger equation would then
separate into n one-electron hydrogen like equations. The zeroth-order wave

function would be a product of n hydrogen like (one-electron) orbitals:

¢{ﬂ] - fl(rlv 611 d"l]fl(rﬂ.! 921 ¢2) o 'fn(rm Bm ¢n)
where the hydrogenlike orbitals are

f= Ry(r)Y/"(6,0)




The Born—Oppenheimer Approximation:

If we assume the nuclei and electrons to be point masses and neglect spin—
orbit and other relativistic interactions (Sections 11.6 and 11.7), then the

molecular Hamiltonian operator is:

D D ) e
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(13.1)




where a and f refer to nuclei and 1 and j refer to electrons. The first term in
(13.1) 1s the operator for the kinetic energy of the nuclei. The second term is
the operator for the kinetic energy of the electrons. The third term is the
potential energy of the repulsions between the nuclei, r,4 being the distance
between nuclei o and  with atomic numbers Z, and Zg. The fourth term is the
potential energy of the attractions between the electrons and the nuclei, ria

being the distance between electron 1 and nucleus a. The last term is the

potential energy of the repulsions between the electrons, r;; being the distance

between electrons 1 and j. The zero level of potential energy for (13.1)
corresponds to having all the charges (electrons and nuclei) infinitely far from

one another.




As an example, consider H,. Let a and B be the two protons, 1 and 2 be the

two electrons, and mj be the proton mass. The H, molecular Hamiltonian

operator is:




The wave functions and energies of a molecule are found from the

Schrodinger equation:

Hilg;, ga) = EW(gs. ga)

where q; and q, symbolize the electronic and nuclear coordinates,

respectively.




The molecular Hamiltonian (13.1) is formidable enough to terrify any
quantum chemist. Fortunately, a very accurate, simplifying approximation
exists. Since nuclei are much heavier than electrons (m, >> m,), the electrons
move much faster than the nuclei. Hence, to a good approximation as far as
the electrons are concerned, we can regard the nuclei as fixed while the
electrons carry out their motions. Speaking classically, during the time of a
cycle of electronic motion, the change in nuclear configuration is negligible.
Thus, considering the nuclei as fixed, we omit the nuclear kinetic-energy

terms from (13.1) to obtain the Schrodinger equation for electronic motion:

(Ha + Vaw)ha = Ui (13.4)




where the purely electronic Hamiltonian F},,, 18

The electronic Hamiltonian including nuclear repulsion is Hy + Vi The nuclear-repulsion
erm Vﬁﬁ 18

+22 < (13.5)
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The energy U in (13.4) is the electronic energy including internuclear

repulsion. The internuclear distances 1,4 in (13.4) are not variables, but are

each fixed at some constant value. Of course, there are an infinite number of
possible nuclear configurations, and for each of these we may solve the
electronic Schrodinger equation (13.4) to get a set of electronic wave
functions and corresponding electronic energies. Each member of the set
corresponds to a different molecular electronic state. The electronic wave

functions and energies thus depend parametrically on the nuclear coordinates:

i:II-"-u:I = IIE'-EI,H{I?I; qa} and U = UH{I?E}

where n symbolizes the electronic quantum numbers.




The variables in the electronic Schrodinger equation (13.4) are the electronic
coordinates. The quantity V,, 1s independent of these coordinates and 1s a
constant for a given nuclear configuration. Now it is easily proved that the
omission of a constant term C from the Hamiltonian does not affect the wave
functions and simply decreases each energy eigenvalue by C. Hence, if V18

omitted from (13.4), we get:

Hora = Eaqthy




where the purely electronic energy E(q,) (which depends parametrically on

the nuclear coordinates q,) is related to the electronic energy including

internuclear repulsion by:




We can therefore omit the internuclear repulsion from the electronic
Schrodinger equation. After finding E for a particular configuration of the

nuclei by solving (13.7), we calculate U using (13.8), where the constant

Vi 1s easily calculated from (13.6) using the assumed nuclear locations.




Hence the Schrodinger equation for nuclear motion is:

Hyiy = Eijiy (13.10)

a

|
Hy=— lzmﬁ + U(4.) (13.11)




The variables in the nuclear Schrodinger equation are the nuclear coordinates,

symbolized by q,. The energy eigenvalue E in (13.10) is the total energy of

the molecule, since the Hamiltonian (13.11) includes operators for both
nuclear energy and electronic energy. E is simply a number and does not
depend on any coordinates. Note that for each electronic state of a molecule
we must solve a different nuclear Schrodinger equation, since U differs from

state to state.




The total energy E for an electronic state of a diatomic molecule is
approximately the sum of electronic, vibrational, rotational, and translational

energies:

E~E T Evib + Erot - Etr

elec

where the constant E

=U(R)).

[not to be confused with E; in (13.7)] 1s given by E

elec elec




The approximation of separating electronic and nuclear motions is called the
Born—Oppenheimer approximation and is basic to quantum chemistry. Born
and Oppenheimer’s mathematical treatment indicated that the true molecular

wave function 1s adequately approximated as:

tl!."-{'qrﬂ qn'} = ﬂb':]{"?;'; QD'}#E'-H[QE} (13-12]

if (m,/m,)"* << 1.




The Born—Oppenheimer approximation introduces little error for the ground
electronic states of diatomic molecules. Corrections for excited electronic

states are larger than for the ground state, but still are usually small as

compared with the errors introduced by the approximations used to solve the

electronic Schrodinger equation of a many-electron molecule. Hence we shall

not worry about corrections to the Born—Oppenheimer approximation.




Computational Models

o A model 1s a system of equations, or computations used to
determine the energetics of a molecule

Different models use different approximations (or levels of
theory) to produce results of varying levels of accuracy.

There 1s a trade off between accuracy and computational time.

There are two main types of models; those that use
Schrodinger's equation (or simplifications of it) and those that
do not.




o Types of Models

(Listed in order from most to least accurate)
o Ab initio
uses Schrodinger's equation, but
with approximations

© Semi Empirical

uses experimental parameters and
extensive simplifications of
Schrodinger's equation

© Molecular Mechanics

does not use Schrodinger's
equation




Ab Initio:

o Ab Initio translated from Latin means “from first
principles.” This refers to the fact that no experimental

data is used and computations are based on quantum
mechanics.

o Different Levels of Ab Initio Calculations
Hartree-Fock (HF)
The simplest ab initio calculation

The major disadvantage of HF calculations is that electron
correlation is not taken into consideration.

The Mgller-Plesset Perturbation Theory (MP)
Density Functional Theory (DFT)

Configuration Interaction (Cl) Take into consideration
electron correlation



Hartree Fock Theory

o Using MO theory, define simplified wave functions (Hartree-Fock wave
functions) which can be further broken down into a linear combination of

one-electron atomic orbitals (LCAO-MO).

o Choice of atomic orbitals is important since they define the basis set

(gaussian type orbitals)

o Take a linear combination of gaussian orbitals to define electron conditions.

(Noble Prize to John Pople 1998)

o Use Self Consistent Field Method to calculate total electronic Energy




Limitations of Hartree Fock:

o Use of simplified wave function

o Single assignment of electrons to orbitals
© Need to expand on the configuration interaction of electrons
O Other ab initio methods

© Moller-Plesset Perturbation Theory

o Typically terminated at the second order

o MP2, MP4




Semi-Empirical Methods:

o Use simplifying assumptions to solve the energy and wave

function of molecular systems.
0 Use simpler Hamiltonian operator

o0 Use empirical parameters for some of the two-electron

integrals

o Complete or partial neglect of other electron integrals




Semi-Empirical Methods:

o CNDO - Complete Neglect of Differential Overlap
o Bonding not calculated
o MINDO — Modified Intermediate Neglect of Differential Overlap

o MNDO — Modified Neglect of Differential Overlap

o Allow for faster calculations
o Allow for bigger chemical systems

© Obvious problems with accuracy




Semi-Empirical Methods

= Advantage
Faster than ab initio

Less sensitive to parameterization than MM
methods

= Disadvantage

Accuracy depends upon parameterization




Semi-Empirical Methods

= Ignore Core Electrons
= Approximate part of HF integration




Semi-Empirical Methods

w AM1

Modified nuclear repulsion terms model to account for
H-bonding (1985, Dewar et al)

Widely used today (transition metals, inorganics)

= PM3 (1989, Stewart)

Larger data set for parameterization compared to AM1
Widely used today (transition metals, inorganics)




General Reccommendations

© More accurate than empirical methods
= Less accurate than ab initio methods

= Inorganics and transition metals

= Pretty good geometry OR energies

“ Poor results for systems with diffusive

interactions (van der Waals, H-bonded,
radicals etc.)




Density Functional Theory

o0 Replace complicated multi-electron wave function and the
Schrodinger equation with simpler equation for calculation of
electron density of the molecular system.

O Local density approximation where electronic properties are
determined as functions of the electron density through the
use of local relationships.

© Nobel Prize to Walter Kohn in 1998




0 One to one correspondence between ground state wave

function and ground state electron density

o Simpler to calculate G. S. electronic wave function from G.

S. electronic density

O Faster and greater Accuracy than conventional ab initio

o Problematic with excited state systems

o Newest method — not standardized




Molecular Mechanics:

» Molecular mechanics programs use equations based on classical physics to

calculate force fields.
» Atoms treated as spheres, bonds as springs and electron are ignored.

» [t assume that the total potential energy (E, ;) of molecule is given by sum

of all the energies of attractive and repulsive forces between atom in structure.




The molecular mechanics equation:

E = EgtE +EytE\g

. . Tarsion
Eg = The energy involved in the

deformation bond either by stretching or

compression. e Bond
A stretching

E, = The energy involved in the angle

bending .

Ej = The torsional angle energy. NDD—BGHdEd Interaﬁ:tiﬁns

Exg = The energy involved in the
interaction between atoms that are not

directly bonded.



Force Field:

Force field refers to calculation of the interaction and energies between

different atoms between bond stretching, angle bending, torsional angle

and nonbonded interaction.

Force field ignores the electronic distribution while Quantum mechanics

considers electronic distribution of molecule.




Molecular Mechanics

o0 Based on Born-Oppenheimer Approximation

o Electrons move in stationary field of the nuclei;

electronic and nuclear motion are separable

o Calculating position of nucle1 only




Molecular Mechanics

o Classical mechanics approach

o Develop a set of potential functions called the force field
which contains adjustable parameters that are optimized to

obtain the best match to the experimental properties.

o0 Mathematical approach in an attempt to reproduce molecular

structures, potential energies and other features




[Limitations of Molecular Mechanics

o Parameters for a particular class of compounds must be in

the program
o Parameters and equations must be accurate

o Extrapolation to ‘“new” molecular structures may be

dangerous

0 Does not deal with electrons




Applications of Molecular Modeling

o0 Understanding Mechanisms
o0 Understanding Conformations
o Understanding Biological Activity

o Understanding Protein Structures




Comparison of the Performance of Molecular Mechanics (MM) and
Quantum Methods (QM):

Task MM Semi- Ab initio DFT
Empirical HF Correlated

Geometry S S

Transition-state -
Geometry

Conformation S

Thermochemistry -

S= satisfactory; U= unsatisfactory




