1.2 Fuzzy Kelations

As crisp relations represent the association between elements of two or more sets, a
fuzzy relation gives the extent of relationship between elements between two fuzzy
sets. Zadeh [190] introduced fuzzy relations in 1965. Later, Zadeh [192], Kaufman,
[91] and Rosenfeld [ 154] developed significant results. There are several applications
for fuzzy relations. We have only a theoretical discussion about fuzzy relations in this
section. We provide a formal definition below. Most of the contents of this section
are based on Rosenfeld’s work in 1975 [154].

If S represents a set, a fuzzy relation pron § is a fuzzy subset of S x S, In symbols,
S xS — [0, 1]suchthat O < p(x,y) <1 forall (x,y) €S x S5 When p takes
the values 0 and 1 alone, it becomes the characteristic function of a relation on §. If
R is a subset of § and P is a relation on S, then P becomes a relation on R only if
(x,y) € Pimpliesx € Rand y € R. If ¢ and 1) are the characteristic functions of R
and P respectively, then n(x, y) = 1 implies ((x) = ¢(y) = | forall x, y € R. This
is equivalent to the expression 77(x, y) < ((x) A((y) for all x, y € R. Motivated by
this, we have the definition of a fuzzy relation on a fuzzy subset as follows.

Definition 1.2.1 Let o be a fuzzy subset of a set S and yz a fuzzy relation on S. Then
(¢ is called a fuzzy relation on o if pu(x, y) < o(x) Aa(y) forall x, y € §.

Definition 1.2.2 If S and 7 are two sets and o and 7 are fuzzy subsets of § and T,
respectively, then a fuzzy relation o from the fuzzy subset ¢ into the fuzzy subset
T is a fuzzy subset ¢ of S x T such that ;((x, v) < o(x) A 7(y) forall x € § and
veT.

[tis interesting to see that for i1 to be a fuzzy relation, the degree of membership of
a pair of elements never exceeds the degree of membership of either of the elements.
Later, while defining a fuzzy graph, this inequality allows us to organize the flow
through an edge of a fuzzy graph in such a way that, it never exceeds the capacities
of its end vertices. Also, 1 is a relation from o into 7* for all o € [0, 1] and as a
consequence, /t* becomes a relation from o* into 7*.

In Definition 1.2.2, if o(x) = | forall x € S and 7(y) = | forall y € T, then
(¢ is called a fuzzy relation from S into 7. Similarly, if o(x) = | forall x € S in
Definition 1.2.1, p is said to be a fuzzy relation on S.

Definition 1.2.3 If o is a fuzzy subset of a set S. the strongest fuzzy relation on o
is the fuzzy relation i, defined by i,(x, v) = a(x) Aa(yv) forall x, y € S.
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Definition 1.2.4 For a fuzzy relation ;2 on S, the weakest fuzzy subset of S, on
which p is a fuzzy relation is @, defined by 0, (x) = Vyes(p(x, y) Vv p(y, x)) for
allx € S.

Definition 1.2.5 Let 1 : 5§ x T — [0, I] be a fuzzy relation from a fuzzy subset o
of §into afuzzy subset 7 of T and v : T x U — [0, 1] is a fuzzy relation from the
fuzzy subset p of T into a fuzzy subset 1 of U. Define pov : S x U — [0, 1] by
(powv)(x,z) = Vv{ux, vy Av(v,z) | ve TYforallx € S,z € U. Then ppowis
called the max-min composition of ¢ and 7.

The composition of any two fuzzy relations as in Definition 1.2.5 is always a
fuzzy relation. But in the next result. we only consider two fuzzy relations defined
on the same fuzzy set.

Proposition 1.2.6 If ;1 and v are fuzzy relations on a fuzzy set o, then prov is a fuzzy
relation on o.

Proof Let § be asetand o be a fuzzy subset of S. Because ¢t and v are fuzzy relations
ona, ju(x,y) < ox)Ac(y)and v(v,z) < a(v) Ao(z) forall x,y,z € §. Thus,
px, vy Ay, z) <ox) Ao(y) Ao(z) < o(x) Ao(z) forall y € S and hence,
(Hov)(x,2) = Vyes(u(x, y) Av(y,2)) <o) Ac(z)forallx,zeS. A

Max—min composition is similar to matrix multiplication, where addition is
replaced by v and multiplication by A. We can easily show that the composition
of fuzzy relations is associative. So if we denote pz o iz by p2. higher powers of
the fuzzy relation 2, i, and so on, can be easily defined. Define ;> (x,y) =
vipgk(x.y) | k=1,2,.. .} forall x, y € S. Also, define ;°(x, y) = 0if x # y and
,uO(.!:. x) = ji(x, x) otherwise.
Definition 1.2.9 Let ; be a fuzzy relation defined on a fuzzy subset o of a set S.
Then the compliment ;€ of 1 is defined as p“(x, y) = 1 — p(x, y) forallx, y € §.

Theorem 1.2.11 Let 7, w, p and v be a fuzzy relations on a fuzzy subset o of a set
S. Then the following properties hold.
((YytTUm=mUT.
(iH)tTNm=mwUT.
(iii) (79 =T.
(fvymU(pUr)=(TrUp)Ur.
(myTN(pNv)=(rNp Nv.
(vi)mo(pov)=(Top)or.
(i) TtN(pUr)=(mrNp)U(rNv).
(wiiiy tU(pNv)y=(mUp) N(TUr).
(ix) (TUm) =7a“Nr°.
(x) (tNm°=a“UTE.
(xi) Foreveryt € [0, 1], (tUm) =7"Un.
(xii) Foreveryt € [0, 1], (rNm)! =7 N7l
(xit)yIf T T pandm Cv, thenTUm CpUw.
(xiv)lftT Cpandm C v, thenTt N7 C pNUL.



Definition 1.2.12 Let ;¢ be a fuzzy relation on o, where o is a fuzzy subset of a set
S. Then g is said to be reflexive if ju(x, x) = o(x) forall x € §.

When i is a reflexive fuzzy relation on o, it is not hard to see that pu(x. v) <
o(x) = p(x,x) and p(y,x) < o(x) = p(x,x) forall x, y € S. In other words,
when we express a fuzzy relation in a matrix form, the elements of any row or any
column will be less than or equal to the diagonal element belonging to that row
or column. Sometimes we say f¢ is reflexive on o. Next we have some interesting
properties of reflexive fuzzy relations.

Theorem 1.2.13 Let ;v and v be fuzzy relations on a fuzzy subset o of a set S. If p
is reflexive, then v C v opand v C pow.

Proof Letx,z € S. Then (rov)(x,2) = Vv{pkx, ) Av(y,2) |y e S} = pulx,x) A
vix,z) =a(x) Av(x,z). Butv(x, 2) < o(x) A o(z). Therefore, o(x) Av(x,z7) =
v(x,z). Thus, v C pow. Similarly, we can prove that v C rop. B

Corollary 1.2.14 If 11 is reflexive, then ;1 C pi°.

Corollary 1.2.15 If ju is reflexive, then ;i C pp C p®> €y C -+ C p.
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