1.2 Fuzzy Relations

As crisp relations represent the association between elements of two or more sets, a fuzzy relation gives the extent of relationship between elements between two fuzzy sets. Zadeh [190] introduced fuzzy relations in 1965. Later, Zadeh [192], Kaufman, [91] and Rosenfeld [154] developed significant results. There are several applications for fuzzy relations. We have only a theoretical discussion about fuzzy relations in this section. We provide a formal definition below. Most of the contents of this section are based on Rosenfeld's work in 1975 [154].

If S represents a set, a fuzzy relation μ on S is a fuzzy subset of $S \times S$. In symbols, $\mu: S \times S \to [0, 1]$ such that $0 \le \mu(x, y) \le 1$ for all $(x, y) \in S \times S$. When μ takes the values 0 and 1 alone, it becomes the characteristic function of a relation on S. If R is a subset of S and P is a relation on S, then P becomes a relation on R only if $(x, y) \in P$ implies $x \in R$ and $y \in R$. If ζ and η are the characteristic functions of R and P respectively, then $\eta(x, y) = 1$ implies $\zeta(x) = \zeta(y) = 1$ for all $x, y \in R$. This is equivalent to the expression $\eta(x, y) \le \zeta(x) \wedge \zeta(y)$ for all $x, y \in R$. Motivated by this, we have the definition of a fuzzy relation on a fuzzy subset as follows.

Definition 1.2.1 Let σ be a fuzzy subset of a set S and μ a fuzzy relation on S. Then μ is called a **fuzzy relation** on σ if $\mu(x, y) \leq \sigma(x) \wedge \sigma(y)$ for all $x, y \in S$.

Definition 1.2.2 If *S* and *T* are two sets and σ and τ are fuzzy subsets of *S* and *T*, respectively, then a fuzzy relation μ from the fuzzy subset σ into the fuzzy subset τ is a fuzzy subset μ of $S \times T$ such that $\mu(x, y) \leq \sigma(x) \wedge \tau(y)$ for all $x \in S$ and $y \in T$.

It is interesting to see that for μ to be a fuzzy relation, the degree of membership of a pair of elements never exceeds the degree of membership of either of the elements. Later, while defining a fuzzy graph, this inequality allows us to organize the flow through an edge of a fuzzy graph in such a way that, it never exceeds the capacities of its end vertices. Also, μ^{α} is a relation from σ^{α} into τ^{α} for all $\alpha \in [0, 1]$ and as a consequence, μ^* becomes a relation from σ^* into τ^* .

In Definition 1.2.2, if $\sigma(x) = 1$ for all $x \in S$ and $\tau(y) = 1$ for all $y \in T$, then μ is called a fuzzy relation from S into T. Similarly, if $\sigma(x) = 1$ for all $x \in S$ in Definition 1.2.1, μ is said to be a fuzzy relation on S.

Definition 1.2.3 If σ is a fuzzy subset of a set S, the **strongest fuzzy relation** on σ is the fuzzy relation μ_{σ} defined by $\mu_{\sigma}(x, y) = \sigma(x) \wedge \sigma(y)$ for all $x, y \in S$.

Definition 1.2.4 For a fuzzy relation μ on S, the **weakest fuzzy subset** of S, on which μ is a fuzzy relation is σ_{μ} , defined by $\sigma_{\mu}(x) = \vee_{y \in S}(\mu(x, y) \vee \mu(y, x))$ for all $x \in S$.

Definition 1.2.5 Let $\mu: S \times T \to [0,1]$ be a fuzzy relation from a fuzzy subset σ of S into a fuzzy subset τ of T and $\nu: T \times U \to [0,1]$ is a fuzzy relation from the fuzzy subset ρ of T into a fuzzy subset η of U. Define $\mu \circ \nu: S \times U \to [0,1]$ by $(\mu \circ \nu)(x,z) = \bigvee \{\mu(x,y) \wedge \nu(y,z) \mid y \in T\}$ for all $x \in S, z \in U$. Then $\mu \circ \nu$ is called the **max-min composition** of σ and τ .

The composition of any two fuzzy relations as in Definition 1.2.5 is always a fuzzy relation. But in the next result, we only consider two fuzzy relations defined on the same fuzzy set.

Proposition 1.2.6 *If* μ *and* ν *are fuzzy relations on a fuzzy set* σ *, then* $\mu \circ \nu$ *is a fuzzy relation on* σ .

Proof Let *S* be a set and σ be a fuzzy subset of *S*. Because μ and ν are fuzzy relations on σ , $\mu(x, y) \leq \sigma(x) \wedge \sigma(y)$ and $\nu(y, z) \leq \sigma(y) \wedge \sigma(z)$ for all $x, y, z \in S$. Thus, $\mu(x, y) \wedge \nu(y, z) \leq \sigma(x) \wedge \sigma(y) \wedge \sigma(z) \leq \sigma(x) \wedge \sigma(z)$ for all $y \in S$ and hence, $(\mu \circ \nu)(x, z) = \bigvee_{y \in S} (\mu(x, y) \wedge \nu(y, z)) \leq \sigma(x) \wedge \sigma(z)$ for all $x, z \in S$.

Max-min composition is similar to matrix multiplication, where addition is replaced by \vee and multiplication by \wedge . We can easily show that the composition of fuzzy relations is associative. So if we denote $\mu \circ \mu$ by μ^2 , higher powers of the fuzzy relation μ^2, μ^3 , and so on, can be easily defined. Define $\mu^\infty(x,y) = \bigvee \{\mu^k(x,y) \mid k=1,2,\ldots\}$ for all $x,y\in S$. Also, define $\mu^0(x,y)=0$ if $x\neq y$ and $\mu^0(x,x)=\mu(x,x)$ otherwise.

Definition 1.2.9 Let μ be a fuzzy relation defined on a fuzzy subset σ of a set S. Then the **compliment** μ^c of μ is defined as $\mu^c(x, y) = 1 - \mu(x, y)$ for all $x, y \in S$.

Theorem 1.2.11 Let τ , π , ρ and ν be a fuzzy relations on a fuzzy subset σ of a set S. Then the following properties hold.

```
 (i) \ \tau \cup \pi = \pi \cup \tau. 
(ii) \ \tau \cap \pi = \pi \cup \tau. 
(iii) \ (\tau^c)^c = \tau. 
(iv) \ \pi \cup (\rho \cup \nu) = (\pi \cup \rho) \cup \nu. 
(v) \ \pi \cap (\rho \cap \nu) = (\pi \cap \rho) \cap \nu. 
(vi) \ \pi \circ (\rho \circ \nu) = (\pi \circ \rho) \circ \nu. 
(vii) \ \pi \cap (\rho \cup \nu) = (\pi \cap \rho) \cup (\pi \cap \nu). 
(viii) \ \pi \cup (\rho \cap \nu) = (\pi \cup \rho) \cap (\pi \cup \nu). 
(ix) \ (\tau \cup \pi)^c = \pi^c \cap \tau^c. 
(x) \ (\tau \cap \pi)^c = \pi^c \cup \tau^c. 
(xi) \ For \ every \ t \in [0, 1], \ (\tau \cup \pi)^t = \tau^t \cup \pi^t. 
(xiii) \ For \ every \ t \in [0, 1], \ (\tau \cap \pi)^t = \tau^t \cap \pi^t. 
(xiii) \ If \ \tau \subseteq \rho \ and \ \pi \subseteq \nu, \ then \ \tau \cup \pi \subseteq \rho \cup \nu. 
(xiv) \ If \ \tau \subseteq \rho \ and \ \pi \subseteq \nu, \ then \ \tau \cap \pi \subseteq \rho \cap \nu.
```

Definition 1.2.12 Let μ be a fuzzy relation on σ , where σ is a fuzzy subset of a set S. Then μ is said to be **reflexive** if $\mu(x, x) = \sigma(x)$ for all $x \in S$.

When μ is a reflexive fuzzy relation on σ , it is not hard to see that $\mu(x, y) \le \sigma(x) = \mu(x, x)$ and $\mu(y, x) \le \sigma(x) = \mu(x, x)$ for all $x, y \in S$. In other words, when we express a fuzzy relation in a matrix form, the elements of any row or any column will be less than or equal to the diagonal element belonging to that row or column. Sometimes we say μ is reflexive on σ . Next we have some interesting properties of reflexive fuzzy relations.

Theorem 1.2.13 Let μ and ν be fuzzy relations on a fuzzy subset σ of a set S. If μ is reflexive, then $\nu \subseteq \nu \circ \mu$ and $\nu \subseteq \mu \circ \nu$.

Proof Let $x, z \in S$. Then $(\mu \circ \nu)(x, z) = \bigvee \{\mu(x, y) \land \nu(y, z) \mid y \in S\} \ge \mu(x, x) \land \nu(x, z) = \sigma(x) \land \nu(x, z)$. But $\nu(x, z) \le \sigma(x) \land \sigma(z)$. Therefore, $\sigma(x) \land \nu(x, z) = \nu(x, z)$. Thus, $\nu \subseteq \mu \circ \nu$. Similarly, we can prove that $\nu \subseteq \nu \circ \mu$.

Corollary 1.2.14 *If* μ *is reflexive, then* $\mu \subseteq \mu^2$.

Corollary 1.2.15 If μ is reflexive, then $\mu^0 \subseteq \mu \subseteq \mu^2 \subseteq \mu^3 \subseteq \cdots \subseteq \mu^{\infty}$.